
Resilient controller against cyber
threats in software-defined IoT

networks

Master Thesis

Olid Mohd Sayed

Matriculation Number

3161945

This work was submitted to the

Institute of Computer Science IV

University of Bonn, Germany

Adviser(s):

Dr. Paulo Henrique Lopes Rettore
Dr. Bruno P. Santos
Mr. Sean Kloth

Examiners:

Prof. Dr. Michael Meier and Dr. Paulo Henrique Lopes Rettore

Registration date: 18-07-2025
Submission date: 19-01-2026

In collaboration with the Fraunhofer Institute for Communication,
Information Processing and Ergonomics (FKIE), Bonn, Germany





iii



iv



Abstract

Software-Defined Networking (SDN) is increasingly adopted in Internet of Things
(IoT) environments to provide flexible and centralized control. However, secur-
ing SDN-based IoT networks remains challenging due to device heterogeneity, dis-
tributed operation, and strict resource constraints. In particular, centralized in-
trusion detection mechanisms lack visibility into host-level resource stress, while
purely local approaches are limited by constrained computation and data availabil-
ity. This thesis addresses these challenges by proposing a Federated Cyber Defense
Agent (FCDA) to support cyber threat detection in SDN-based IoT environments.
The FCDA is designed as a distributed anomaly detection component that comple-
ments an existing Cyber Defense Agent (CDA) and integrates network traffic metrics
with host-level hardware resource monitoring, using a two-phase design comprising
offline knowledge generation and online Federated Learning (FL). Offline training
produces deployment artifacts, including anomaly detection models, normalization
parameters, and detection thresholds, enabling immediate detection upon deploy-
ment, while online operation allows clients to perform local detection and federated
model updates without sharing raw data. The proposed framework is implemented
and evaluated under resource-constrained conditions, where experimental results
demonstrate stable detection performance with high accuracy and precision, low
false-positive rates, and minimal runtime overhead. Additional experiments show
that the framework scales effectively from small to larger federations, maintaining
consistent detection performance as the number of clients increases.



vi



Acknowledgments

To my supervisors, Dr. Paulo Henrique Lopes Rettore, Dr. Bruno P. Santos, and Mr.
Sean Kloth, I am deeply grateful for your guidance, mentorship, and constructive
feedback throughout my thesis work. Your encouragement and confidence in my
abilities were invaluable to the successful completion of this research. To my family
and friends, thank you for your continued encouragement, patience, and support
throughout this journey.



viii



Contents

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Design 11

3.1 Offline Knowledge Generation . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Data Preparation and Preprocessing . . . . . . . . . . . . . . 13

3.1.2 Centralized Autoencoder Pre-training . . . . . . . . . . . . . . 14

3.1.3 Hyperparameter Optimization . . . . . . . . . . . . . . . . . . 16

3.1.4 Federated Training with Federated Averaging with Momen-
tum (FedAvgM) . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.5 Deployment Artifact Generation . . . . . . . . . . . . . . . . . 19

3.2 Online Monitoring, Detection, and Response . . . . . . . . . . . . . . 20

3.2.1 System Deployment in MininetFed . . . . . . . . . . . . . . . 21

3.2.2 Continuous Monitoring and Feature Extraction . . . . . . . . 23

3.2.3 Anomaly Detection Mechanism . . . . . . . . . . . . . . . . . 24

3.2.4 Online Federated Adaptation . . . . . . . . . . . . . . . . . . 25

3.2.4.1 Conditional Local Training . . . . . . . . . . . . . . 26

3.2.4.2 Client Selection . . . . . . . . . . . . . . . . . . . . . 26

3.2.4.3 Server Aggregation Loop . . . . . . . . . . . . . . . . 26

3.2.4.4 Connection to FedAvgM . . . . . . . . . . . . . . . . 26

3.2.4.5 Stability Safeguards . . . . . . . . . . . . . . . . . . 27

3.2.5 Response Strategy and System Scope . . . . . . . . . . . . . . 27



x Contents

4 Evaluation 29

4.1 Motivational Analysis: Impact of Network Attacks on Host Hardware
Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Experimental Environment and Setup . . . . . . . . . . . . . . . . . . 31

4.2.1 MininetFed Testbed Configuration . . . . . . . . . . . . . . . 32

4.2.2 Network Topology and Resource Constraints . . . . . . . . . . 32

4.2.3 Experiment Duration . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Data Collection Methodology . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Attack Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.2 Feature Collection Methods . . . . . . . . . . . . . . . . . . . 35

4.3.2.1 Hardware-Based Features . . . . . . . . . . . . . . . 35

4.3.2.2 Network-Based Features . . . . . . . . . . . . . . . . 36

4.3.3 Dataset Labeling Strategy . . . . . . . . . . . . . . . . . . . . 36

4.3.4 Dataset Organization . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Offline Dataset Preparation and Feature Selection . . . . . . . . . . . 37

4.4.1 Dataset Cleaning and Normalization . . . . . . . . . . . . . . 37

4.4.2 Training Data Composition . . . . . . . . . . . . . . . . . . . 38

4.4.3 Dataset-Level Analysis of Hardware–Network Relationships . . 38

4.4.3.1 Temporal Analysis of Hardware and Network Metrics 38

4.4.3.2 Correlation Between Hardware and Network Metrics 39

4.4.3.3 Implications for Joint Monitoring in IoT Environments 40

4.4.4 Feature Redundancy Analysis . . . . . . . . . . . . . . . . . . 40

4.4.5 Feature Relevance Assessment Using Mutual Information . . . 42

4.4.6 Final Feature Selection . . . . . . . . . . . . . . . . . . . . . . 42

4.4.7 Offline Dataset Split . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Online Deployment and Experimental Procedure . . . . . . . . . . . . 43

4.5.1 Online Deployment Configuration . . . . . . . . . . . . . . . . 44

4.5.1.1 Anomaly Detection Threshold Selection and Sensi-
tivity Analysis . . . . . . . . . . . . . . . . . . . . . 44

4.5.2 Online Monitoring and Detection Loop . . . . . . . . . . . . . 45

4.5.3 Federated Training Protocol . . . . . . . . . . . . . . . . . . . 46

4.5.4 Server-Side Aggregation and Model Distribution . . . . . . . . 46



Contents xi

4.5.5 Experimental Procedure Summary . . . . . . . . . . . . . . . 46

4.6 Evaluation Metrics and Results . . . . . . . . . . . . . . . . . . . . . 49

4.6.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6.2 Detection Performance Across Clients . . . . . . . . . . . . . . 49

4.6.3 Confusion Matrix and Attack-Type Error Analysis . . . . . . 51

4.6.4 ROC Curve Analysis . . . . . . . . . . . . . . . . . . . . . . . 53

4.6.5 Comparative Evaluation with FL from Scratch . . . . . . . . . 53

4.7 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7.1 Experimental Setup for Scalability Analysis . . . . . . . . . . 56

4.7.2 Experiment 1: 8-Client Deployment . . . . . . . . . . . . . . . 56

4.7.3 Experiment 2: 16-Client Deployment . . . . . . . . . . . . . . 58

4.7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Conclusion 61

Bibliography 65

List of Figures 68

List of Tables 70



xii Contents



1
Introduction

As the IoT continues to expand, integrating billions of devices into interconnected
systems, SDN has emerged as a vital architecture to support this growth [3]. SDN
enables centralized control and dynamic programmability of networks, providing sig-
nificant advantages in managing the complexity and scalability of IoT ecosystems.
By decoupling the control and data planes, SDN facilitates seamless network con-
figuration and optimization, making it an ideal choice for resource-constrained IoT
environments [3]. However, this shift toward SDN-based IoT networks also intro-
duces critical cybersecurity challenges that threaten the stability and security of
these systems.

The SDN controller, often referred to as the brain of the network, is particularly
vulnerable to cyber threats. Attacks such as Distributed Denial-of-Service (DDoS),
flow table overflow, and malicious packet injections can disrupt network functional-
ity, compromise data integrity, and even lead to controller failure [8]. These risks are
worsened in IoT environments, where the vast number of devices and their diverse
communication protocols increase the attack surface. Furthermore, the resource con-
straints of IoT devices, including limited CPU, memory, and bandwidth, hinder the
effectiveness of traditional detection mechanisms that primarily rely on analyzing
network traffic patterns and packet headers.

Current research has made significant progress in developing mitigation strategies
for SDN cyber threats, such as advanced traffic analysis algorithms and flow table
management techniques [6, 15]. However, these methods often operate in isolation,
failing to leverage the potential of hardware-level insights. Resource anomalies, such
as unusual CPU and memory usage patterns, remain an underexplored dimension in
threat detection. These anomalies can serve as early indicators of malicious activ-
ities, particularly in IoT setups where conventional traffic-based methods struggle
due to high resource contention and limited scalability.

Recognizing this gap, this thesis extends the foundational work of [12, 13] by in-
troducing a resilient security framework for SDN-based IoT networks that lever-
ages distributed learning. This approach uniquely integrates hardware monitoring,



2 1. Introduction

specifically CPU and memory usage, along with traditional network analysis. By
combining these diverse data sources within a FL paradigm, the proposed solution
provides a dynamic, adaptive mechanism for detecting and mitigating cyber threats
in real time, offering a comprehensive understanding of the network’s hardware and
software behavior.

This work presents a new paradigm in SDN security for IoT networks, addressing the
dual challenges of scalability and vulnerability in resource-constrained environments.
The findings contribute to more robust and adaptive security solutions, ensuring the
safe and efficient operation of IoT ecosystems.

1.1 Problem Statement

The growing integration of IoT devices within SDN frameworks opens up new pos-
sibilities for enhanced connectivity and centralized network management. However,
this expansion also increases the risk of cyber-security threats, which can signif-
icantly undermine the stability and integrity of IoT networks. Most existing re-
search, including prior studies such as those presented in [12] and [13], has focused
on detecting and mitigating cyber attacks primarily through network-based analyti-
cal methods, primarily by monitoring network traffic and analyzing packet headers.
While these approaches have shown effectiveness, they often fail to address a critical
limitation present in IoT environments: resource constraints. IoT devices typically
operate with limited CPU, memory, and bandwidth, creating a unique challenge for
implementing effective, sustainable security solutions.

Conventional threat detection techniques are tailored for more powerful computing
environments, where computational resources are abundant. These methods often
depend heavily on comprehensive, ongoing network traffic analysis, a process that
can be resource-intensive and difficult to maintain in the resource-limited settings of
IoT. The dilemma is that, although traffic-based techniques are useful for identifying
suspicious behaviors, they can exhaust the limited CPU and memory resources of
IoT devices, resulting in reduced performance and an increased risk of system failure.
Therefore, these methods may not efficiently detect threats in SDN-IoT networks,
where resource limitations hinder the accuracy and speed required for real-time
threat identification.

Another major issue is the reliance on network traffic data alone, which may not
always reveal the full extent of potential threats. Attacks that subtly manipulate
resource utilization, such as spikes in CPU and memory usage, might remain un-
noticed if only network traffic is evaluated. These subtle hardware performance
changes could serve as early warning signs of an imminent cyberattack. However,
few studies have investigated how integrating hardware monitoring with network
analysis could improve threat detection. By neglecting hardware resource metrics,
existing solutions overlook the opportunity to identify threats based on anomalies
in CPU and memory usage, which could be particularly significant in IoT devices,
where even slight variations may indicate malicious actions.

This gap in current research underscores the need for a more robust SDN controller
that can address both network- and hardware-based threats in IoT environments.



1.2. Solution 3

The challenge lies in creating an adaptive, lightweight security mechanism that can
adjust its threat-detection parameters in real time based on resource usage without
overloading the system’s limited capabilities. Furthermore, reliance on centralized
analysis may significantly intensify communication overhead in large-scale IoT de-
ployments. A distributed learning-based solution, such as FL, offers a promising
approach to mitigating attacks by reducing the need to transmit raw data to a
central controller, thereby lowering communication overhead and better accommo-
dating resource-constrained devices. The development of such a solution requires
novel techniques to integrate CPU and memory usage metrics with network data,
enabling a more comprehensive and in-depth understanding of network security. Ad-
dressing these challenges is essential to establishing a resilient security framework for
SDN-driven IoT networks, ensuring these systems can continue to function securely
despite the inherent constraints of IoT environments.

1.2 Solution

This thesis addresses the challenge of providing secure SDN based IoT, with an
emphasis on providing a FCDA for the use in distributed and resource-limited SDN-
IoT systems. The agent will utilize both hardware system-level monitoring at the
host level and network-level monitoring, utilizing a federated machine learning ap-
proach to provide an adaptive, privacy-preserving method to detect anomalies on
heterogeneous devices in the IoT.

The FCDA is a decentralized detection framework comprising two interdependent
operating phases: the Offline Knowledge Generation Phase and the Online Monitor-
ing and Federated Adaptation Phase. In the offline phase, the FCDA uses historical
data collected from IoT hosts to train an unsupervised anomaly detection model via
hyperparameter tuning and federated training. Once an anomaly detection model
has been generated during the offline phase, the FCDA generates the deployment
artifacts needed to consistently and efficiently initialize the detection components in
the online phase.

In the online stage, lightweight client agents will be deployed on each IoT host to
collect system-level metrics (e.g., CPU and Memory usage) and network-level traffic
characteristics. Each client agent will perform real-time anomaly detection using a
reconstruction-based autoencoder and participate in FL to update the global model
over time. A centralized federated server will coordinate the exchange of models
between clients using a momentum-based aggregation strategy, allowing the system
to adapt to evolving workloads and attack patterns while maintaining data locality
and minimizing communication overhead.

The FCDA will focus on distributed anomaly detection and adaptive learning in
order to identify potential threats. The FCDA will generate alerts when it detects
anomalous activity and these alerts will be sent to the CDA[12, 13] and the CDA
will take action to mitigate the threat. In this way, the proposed agent provides
an additional layer of protection to the current agents by sending alert information
to the CDA and allowing the CDA to perform various countermeasures such as
modifying flow rules, isolating switches, reconfiguring controllers, and eliminates
duplication of mitigation logic. This design separates responsibility of detection



4 1. Introduction

and response, maintains compatibility with previous work and improves the overall
system’s ability to withstand attacks through the provision of timely and accurate
detection information to the CDA.

1.3 Thesis Structure

This thesis is structured as follows. After this introduction, Chapter 2 presents the
foundational concepts of Software-Defined Networking and IoT security, followed by
a comprehensive review of existing research on cyber threat detection and mitigation
in SDN-based IoT environments. Chapter 3 describes the design and architecture of
the proposed FCDA, detailing both offline knowledge generation and online moni-
toring and adaptation mechanisms. In Chapter 4, the proposed design is evaluated
in a MininetFed-based environment to assess its effectiveness, advantages, and lim-
itations. Finally, Chapter 5 concludes the thesis by summarizing the contributions
and outlining directions for future work.



2
Background

SDN has emerged as a transformative architecture for managing network infrastruc-
ture, particularly in IoT environments. By decoupling the control plane from the
data plane, SDN enables centralized network management through a programmable
controller, offering flexibility and dynamic configuration capabilities essential for IoT
deployments. However, it also raises new security concerns beyond those inherent
in SDN.

The central controller in SDN manages the flow tables, routing information, and
network policies. However, when operating in IoT environments, the controller must
do so while constrained by very limited CPU, memory, and power resources. The
most common protocol for communication between controllers and switches in SDN
architectures is OpenFlow. Flow tables in SDN switches maintain entries that dictate
packet forwarding behavior, each specifying match conditions and corresponding
actions.

Cyber threats against SDN-based IoT networks target vulnerabilities across the net-
work’s layers. A DDoS attack can flood the controller with traffic and exhaust its
computational resources, rendering the network unable to continue functioning. Ad-
ditionally, flow table overflow attacks can flood a switch with many flow entries,
consuming all available space and limiting the switch’s ability to forward packets,
thereby degrading network performance. Lastly, Man in the Middle (MitM) at-
tacks can compromise the integrity of data by intercepting packets flowing over the
OpenFlow channels and possibly modifying them. These types of attacks have se-
rious implications in IoT environments due to constraints on deploying traditional
security mechanisms.

To detect and mitigate cyber threats against SDN networks, there are typically sev-
eral different categories of detection and mitigation approaches. For example, traffic-
based analysis monitors packet characteristics and flow patterns to detect anomalies
indicative of malicious traffic. Similarly, threshold-based monitoring monitors the
network’s normal operation and will alert when abnormal traffic is detected. Finally,
machine learning approaches including Long Short-Term Memory (LSTM) models



6 2. Background

and Self-Organizing Maps (SOM) can adaptively classify the network traffic and
distinguish between legitimate traffic and malicious traffic. Further still, hardware-
based detection approaches monitor resource utilization (e.g., CPU and memory) to
detect attacks that consume resources beyond normal operations.

However, integrating these detection and mitigation approaches into SDN controllers
poses challenges, including increased computational overhead, particularly in resource-
constrained IoT environments. Lightweight detection approaches, such as Bloom fil-
ters, provide efficient packet inspection and low memory requirements. Furthermore,
distributed learning approaches, such as FL, enable collaborative threat detection
across network entities while preserving user privacy and reducing the load on the
central controller. These concepts form the foundation for understanding the current
state of research contributions and to identify opportunities to improve the security
of SDN-based IoT systems.

2.1 Related Work

The increasing adoption of SDN in IoT networks has prompted extensive research
into detecting and mitigating cyber threats within these environments. In order
to provide a systematic evaluation of prior contributions, Table 2.1 provides an
overall summary of the literature organized by several key dimensions. Specifically,
studies are categorized in terms of the type of attacks addressed by the studies (e.g.,
Denial of Service (DoS), DDoS, MitM, New Flow (NF)), while the specific network
components examined in each study are noted via columns indicating the Testing
Environment (TE), Connection Type (CT) and Network Elements (Host, Controller
(Ctr), Switch (SW)). Each study is also classified with respect to its focus being
either IoT specific scenarios or general SDN environments via the “IoT” column.
Finally, the architectural methods used by each solution are indicated via columns
for the three approaches to building a solution: Centralized (Cent.), Statistical-Based
(Stat.) and Learning-Based (Learn.). Lastly, each study’s identified limitations and
mitigation techniques are captured in separate columns. These results from the
structured comparisons demonstrate that there are multiple types of attacks being
targeted, various mitigation techniques being developed and a number of limitations
that exist across the existing literature.

The table highlights key threats including DDoS, DoS, MitM, and NF attacks, along-
side corresponding mitigation approaches. Most studies focus on detecting attacks
through network traffic analysis and specific algorithms, such as Bloom Filters in
[14] and Self-Organizing Maps (SOM) in [24]. However, significant gaps remain in
addressing hardware resource constraints, particularly in IoT environments where
CPU and memory usage are critical factors.

DDoS attacks are among the most prevalent threats in SDN environments, capable
of exhausting controller resources and causing service unavailability. The work in [1]
and [6] examines the impacts of DDoS attacks, with [1] investigating controller failure
risks due to SDN’s centralized architecture, while [6] highlights system exhaustion
as attackers flood the network with malicious requests. These attacks disrupt not
only controller functionality but also degrade overall network performance, particu-
larly problematic in bandwidth-constrained IoT networks. Flow table overflow poses



2.1. Related Work 7

another frequent threat by flooding the data plane with excessive flow entries, reduc-
ing network throughput, and increasing packet loss. Y. Qian et al. [19] and H. Luo
et al. [15] explore this vulnerability by simulating flow table overflow scenarios in
OpenFlow-enabled switches, demonstrating how malicious actors exploit the limited
capacity of flow tables to destabilize networks. Results from [19] illustrate how flow
table overflow leads to packet loss and availability issues, emphasizing the need for
effective flow management strategies.

MitM attacks, while less frequent, pose severe risks to data integrity and confiden-
tiality in IoT systems. Researchers in [14] investigate the impact of MitM attacks
on OpenFlow channels and propose the use of Bloom filters to detect packet modifi-
cations, showcasing the importance of lightweight detection techniques suitable for
IoT’s limited resources. Collectively, these threats underscore the necessity for en-
hanced security frameworks within SDN-IoT networks that can dynamically respond
to various attack vectors.
Paper AT Network HRA Cent. Stat Learn Mitigation Limitation

DDoS DoS MitM NF TE CT Ctlr/SW/Hst size CU MU
IoT Focus

[4] ✓ ✗ ✗ ✗ ø Z - ✓ ✓ ✓ ✓ ✗ Counter-based DDoS Attack Detection (C-DAD) Framework Threshold Challenges
[14] ✗ ✗ ✓ ✗ ø Z - ✗ ✗ ✓ ✓ ✗ Bloom Filters Extreme Cases
[23] ✗ ✗ ✗ ✓ á Z 1/3/2 ✗ ✗ ✓ ✓ ✗ Smart Security Mechanism (SSM) Basline Calculations
[22] ✓ ✗ ✗ ✗ ø Z 1/30/60 ✗ ✗ ✓ ✓ ✗ SDN sEcure COntrol and Data plane (SECOD) Algorithm IP Address Spoofing Challenges
[2] ✓ ✗ ✗ ✗ ø Z 1/1/6 ✗ ✗ ✓ ✓ ✗ Cosine Similarity based detection Relied on simulated traffic

Non-IoT Focus
[19] ✗ ✓ ✗ ✗ ø Z 1/1/20 ✗ ✗ ✓ ✓ ✗ Eviction Algorithm Increased Packet Loss
[15] ✗ ✓ ✗ ✗ - Z 1/1/50 ✗ ✗ ✓ ✓ ✗ Least Frequently Used (LFU) Algorithm Packet Loss
[1] ✓ ✗ ✗ ✗ ø Z -/4/30 ✗ ✗ ✓ ✓ ✗ AMS Sketch Algorithm -
[7] ✗ ✓ ✗ ✗ á Z - ✓ ✓ ✓ ✓ ✗ DosDefender -
[6] ✓ ✗ ✗ ✗ ø Z 1/3/- ✗ ✗ ✓ ✗ ✓ SOM -
[25] ✗ ✓ ✗ ✗ ø Z 1/1/20 ✗ ✗ ✓ ✓ ✗ Routing Aggregation Algorithm Architectural Changes
[24] ✓ ✗ ✗ ✗ ø Z - ✗ ✗ ✓ ✗ ✓ SOM False Positives
[17] ✓ ✗ ✗ ✗ ø Z 1/9/64 ✗ ✗ ✓ ✓ ✗ Entopy Measuremnet on Destination IP -
[11] ✗ ✓ ✗ ✗ ø Z 1/1/2 ✗ ✗ ✓ ✓ ✗ Rate Limiting -
[10] ✓ ✗ ✗ ✗ ø Z 1/2/8 ✗ ✗ ✓ ✓ ✗ Statistical Defense Mechanism -
[12] ✓ ✗ ✗ ✗ ø Z 2/10/20 ✗ ✗ ✓ ✓ ✗ CDA Threshold-Based -
[13] ✓ ✗ ✗ ✗ ø Z 2/10/20 ✗ ✗ ✓ ✗ ✓ CDA Learn-Based LSTM LSTM model relies on only two features
- ✓ ✗ ✗ ✗ ø Z 1/4/16 ✓ ✓ ✗ ✗ ✓ CDA Threshold-Based / CDA Learn-Based LSTM Limited to volumetric attacks, fixed thresholds

AT – Attack Types, HRA – Hardware Resource Analysis,
NF – New Flow, TE – Testing Environment (Emulator,Testbed),
CT – Connection Type (Ethernet),
CU – CPU Usage, MU – Memory Usage,
Cent. – Centralized, Stat – Statistical Based, Learn – Learning Based,
Ctlr – Controller, SW – Switch,
Hst – Host, Z - Ethernet,
ø - Emulator, á - TestBed

Table 2.1 Literature Overview

Mitigation approaches proposed in existing literature focus on flow table manage-
ment, traffic classification, and anomaly detection. Flow entry management strate-
gies discussed in [15] and [25] address flow table overflow by dynamically adjusting
flow entry timeouts and evicting less frequent entries. The work in [25] introduces a
multilevel flow table architecture that combines Ternary Content Addressable Mem-
ory (TCAM) and Static Random Access Memory (SRAM) to expand flow table
capacity without increasing power consumption. These techniques enhance con-
troller performance during flow table overload, though their effectiveness is limited
by IoT hardware constraints.

Traffic classification and anomaly detection techniques feature prominently across
multiple studies. The approach in [6] uses SOM to classify network traffic, distin-
guishing between normal and malicious flows based on traffic characteristics, en-
abling administrators to receive alerts on potential threats for prompt intervention.
Y. Xu et al. [24] and S. M. Mousavi et al. [17] employ entropy-based and statistical
methods to monitor traffic anomalies. Specifically, [17] calculates the entropy of
destination IP addresses to detect DDoS attacks early, achieving a 96% detection
rate within the first 250 packets of attack traffic. However, these methods rely on
significant computational resources and may struggle in resource-constrained IoT
setups where frequent packet analysis can overwhelm system capacity.



8 2. Background

Another promising approach, as demonstrated in [14], which uses Bloom filters
to monitor packet integrity across flow paths, detecting MitM attacks with min-
imal overhead. This method leverages lightweight filters to identify discrepancies
in packet forwarding, showing potential as a low-resource alternative to traditional
methods. The authors in [10] propose SDNScore, a statistical defense mechanism
against DDoS attacks that empowers SDN switches to autonomously classify and
prioritize traffic flows based on predefined criteria. SDNScore outperforms conven-
tional entropy models at distinguishing between malicious and legitimate traffic,
though its effectiveness depends on sufficient computational power.

Building upon controller-based approaches, [12] [13] propose a CDA implemented
directly on the SDN controller to enhance resilience against cyber threats in tactical
networks. This CDA employs a dual-detection approach: threshold-based monitor-
ing of flow entry counts and packet rates, combined with machine-learning-based
detection using LSTM models to identify flow table flooding attacks. Upon de-
tection, the CDA employs reactive and proactive response mechanisms, including
clearing flow tables, blocking malicious ports, isolating compromised switches, and
initiating failover to backup controllers to ensure continuous operation and maintain
network integrity.

Despite these contributions, several limitations restrict the applicability of existing
methods in SDN-enabled IoT networks. Most approaches rely heavily on traffic-
based analysis, which can be computationally intensive. The authors in [4] and [2]
highlight the need for efficient resource management in IoT networks, as excessive
dependence on traffic monitoring can strain CPU and memory resources, especially
in large-scale deployments. Moreover, many proposed methods are reactive, ad-
dressing threats only after they are detected. S. Wang et al. in [22] emphasize
this drawback, noting that while SECOD is effective in reactive scenarios, it lacks
proactive capabilities, limiting response speed in fast-evolving attack situations.

Adaptability to diverse IoT environments presents another challenge, as resource
constraints and device heterogeneity can hinder threat detection. The work in [4]
presents a C-DAD framework that, while effective in IoT contexts, is limited by
its testing environment and protocol dependencies. This framework’s accuracy in
real-world IoT networks remains uncertain due to challenges with adapting prede-
fined thresholds to dynamic traffic patterns. Similarly, [2] demonstrates that existing
DDoS mitigation strategies often struggle to account for network fluctuations caused
by resource limitations, highlighting the need for more adaptive solutions. A lim-
itation identified in [12] [13] is that the flow table flooding LSTM model within
their CDA currently relies on only two features, which can lead to misclassifications.
Additionally, more comprehensive evaluation is needed to compare threshold-based
and machine learning-based models, specifically by including cpu and memory usage
metrics in test environments.

The table shows that while IoT-focused studies propose frameworks such as C-DAD
[4], mitigation techniques often rely on thresholds that may not adapt well to dy-
namic IoT conditions. Non-IoT-focused studies explore flow management and sta-
tistical models but lack considerations for the constrained nature of IoT devices
[12]. This comprehensive overview emphasizes the need for integrating hardware-
level monitoring into existing threat detection frameworks to address the dual chal-
lenges of scalability and resource constraints in IoT networks. By combining CPU



2.1. Related Work 9

and memory usage metrics with traffic data, enhanced detection capabilities be-
come possible, as unusual hardware usage patterns could serve as early indicators
of malicious activity. Such an approach would reduce the computational strain of
current methods while providing more timely and accurate threat detection suitable
for resource-constrained SDN-enabled IoT environments.



10 2. Background



3
Design

Traditional methods for detecting intrusions using SDN and/or IoT environments
cannot effectively detect all forms of attacks due to high traffic volumes on each
device; a lack of prior experience with such a wide range of threats; and limited
resources on each device. Also, traditional approaches to intrusion detection are
mostly based on static models and centralized monitoring systems; therefore, they
may not adapt quickly to new attack types. Moreover, collecting raw network data or
system logs at a central location can lead to privacy issues, communication overhead,
and single points of failure.

Therefore, the goal of this research is to propose a FCDA that leverages FL and un-
supervised anomaly detection to support adaptive, privacy-preserving, and resource-
aware intrusion detection in SDN-enabled IoT networks. The proposed system has
been designed to run in two closely related but distinct stages: an offline stage and
an online stage. The offline stage involves building a reliable initial detection model
and preparing artifacts for deployment using historical data that was collected during
both normal and attack scenarios.

In the offline stage, the focus is on preprocessing and normalizing the collected data,
pretraining an autoencoder to build a detection model based on normal behavior,
optimizing hyperparameters for training the detection model, and refining the global
detection model through FL. As a result of the offline stage, there will be deploy-
ment ready artifacts, specifically the trained model weights, client specific training
parameters, anomaly detection threshold values, and a normalized state that re-
mains constant. These artifacts will serve as a baseine for deployment of the FCDA
in the online phase on a variety of different IoT devices.

The online phase will represent the actual runtime execution of the FCDA in an op-
erational SDN-IoT environment. During this phase, the client agents that have been
installed on each of the IoT devices will continuously collect and monitor hardware
and network level data, conduct real-time anomaly detection using reconstruction
error, and optionally contribute to FL rounds. Each round of FL will be managed by
the federated server that utilizes FedAvgM. The advantage of utilizing FedAvgM is



12 3. Design

that it provides the ability to improve performance over time in a distributed man-
ner and maintain performance stability despite the fact that the data being used for
training is Non-Independent and Identically Distributed (non-IID).

An important aspect of the FCDA is that the continuous anomaly detection is in-
dependent of FL, thereby eliminating potential delay in intrusion detection caused
by coordinating FL rounds. Figures 3.1 and 3.2 illustrate the entire life cycle of
the proposed FCDA, from design-time model development to runtime execution and
adaptation. Specifically, Figure 3.1 represents the pipeline for offline knowledge
generation, depicting the major design decisions associated with data preparation,
model training, optimization, and artifact creation. On the other hand, Figure 3.2
displays the workflow for the online detection, monitoring, and federated adaptation
phases illustrating the relationships between the client agents, the federated server,
and the decision-making processes for both anomaly detection and responses.

The separation of offline and online stages is a critical design choice. It enables the
completion of computationally intensive operations (e.g., large-scale training, hyper-
parameter tuning) in the offline phase, whereas the online phase retains lightweight
properties, making them feasible for constrained environments. At the same time,
the inclusion of FL in the online phase provides the capability to update the model
in response to changes in network conditions and attack behaviors without having
to directly access raw data centrally.

This chapter describes the design of the proposed system. Section 3.1 provides
additional information about the offline knowledge generation process, providing a
detailed description of each component illustrated in the offline knowledge genera-
tion. Section 3.2 describes the online monitoring, detection, and FL components,
focusing on the runtime behavior, decision logic, and overall scope of the system.

3.1 Offline Knowledge Generation

The Offline Knowledge Generation Stage generates an effective and deployable anomaly
detection model before its deployment. It uses data previously collected in the tar-
get environment to learn the typical patterns of the system’s behavior, tuning its
model parameters and creating reliable anomaly threshold values. As such, by doing
the computationally expensive work offline, the proposed system minimizes runtime
overhead on resources constrained devices with consistent results across all deployed
client devices. The artifacts produced during this offline pipeline serve as the ba-
sis for the online monitoring and the Federated Adaptation mechanisms shown in
Figure 3.1.



3.1. Offline Knowledge Generation 13

Offline Knowledge Generation

Pr
ep

ro
ce

ss
Raw

Dataset

Raw Dataset
(Normal + Attack)

Preprocessing,
Normalization & Client

Partitioning

Tr
ai

n 
&

 T
un

e

Centralized Autoencoder
Pre-training (Normal

Traffic)
(Produces initial model W₀)

Hyperparameter
Optimization
(LR, Epochs)

Candidate
Model

Evaluate
(Reconstruction MSE)

(Initial Model)

Evaluate Initial Model

Evaluate with
tuned parameter

Compare
Models

Improved

Evaluate (Reconstruction
MSE)

(Tuned Model)

Federated Training
(FedAvgM)

(Client-wise Normal Data)

Ex
po

rt

Deployment Artifacts

Initial / Final Model Weights
Client-specific Parameters
Detection Thresholds
Scaler State

Figure 3.1 Offline Knowledge Generation.

3.1.1 Data Preparation and Preprocessing

Anomaly detection in resource constrained SDN-IoT systems is heavily reliant on the
integrity and consistency of the input data. In order to achieve this, the proposed
system employs a structured Data Preparation and Preprocessing pipeline to ensure
that the features measured from various hosts are comparable, resilient to noise, and
compatible with both Centralized and FL paradigms.



14 3. Design

The raw data collected in the Offline Stage is comprised of system-level and network-
level measurements taken from multiple IoT hosts under both normal and attack
conditions. Each record represents a snapshot of host activity over a specified obser-
vation window and includes a combination of hardware utilization metrics (e.g., CPU
usage, Memory usage, Process count, System load) and network traffic characteris-
tics (e.g., Packet counts, Protocol distributions, Connection indicators). The hybrid
design of these features allows the detection model to detect both computational
stress and abnormal communication patterns, both of which are typical indicators
of cyber attacks in SDN-enabled IoT networks.

Before the model training phase begins, the dataset is cleaned by removing incom-
plete, undefined or numerically unstable records. Specifically, records containing
missing values, infinite values or undefined measurements are dropped to avoid bias
and instability in the learning process. The selected feature set and essential iden-
tifiers are retained in the cleaning phase to ensure that the preprocessing pipeline
remains lightweight and reproducible.

A global Min-Max Normalization Strategy is employed to ensure that all clients have
consistent feature scaling. A single Min-Max Scaler is fitted to the combined feature
space of the entire offline dataset and is then applied uniformly to all samples. This
strategy guarantees that all features will be scaled to the same numerical range
independent of the client from which the data was originated. Consistent scaling
is particularly important in FL environments where heterogeneous scaling among
clients can severely impair aggregation performance and slowing convergence.

Following normalization, the dataset is partitioned on a per-client basis to reflect the
distributed nature of the target deployment environment. For each client, samples
are divided into two subsets: one which contains only normal samples used for
unsupervised model training and threshold estimation and a mixed subset containing
both normal and attack samples reserved for later evaluation. The separation of
samples assures that labels are not available during training and aligns with the
intended unsupervised anomaly detection paradigm.

The output of this preprocessing stage is a collection of client-specific datasets having
common feature representations and clearly defined roles in the subsequent training
and evaluation phases. By performing normalization and partitioning offline, the
proposed system ensures that all deployed clients have a common feature space
and scaling policy, allowing for stable federated optimization and reliable anomaly
detection during online operation.

3.1.2 Centralized Autoencoder Pre-training

A deep autoencoder is chosen as the core anomaly detection model because prior
research [16] indicated it to be effective for intrusion detection within IoT environ-
ments, especially when little-to-no labeled attack data exists for a given environment.
Moreover, the authors of [16] were able to demonstrate how, due to the consistent
and predictable nature of IoT device traffic patterns, a deep autoencoder could ef-
fectively identify a large number of both known and unknown attacks based on the
reconstruction error of the data fed into the autoencoder. Following this, [18] demon-
strated that autoencoders can also naturally combine with FL, thereby providing a
superior alternative compared to supervised models in heterogeneous IoT networks.



3.1. Offline Knowledge Generation 15

Autoencoders contain two primary functions, an encoder function fθ(·) , and a de-
coder function gϕ(·). An encoder function fθ(·) is responsible for mapping a feature
vector into a lower dimensional latent representation. In contrast, the decoder func-
tion gϕ(·) is responsible for reconstructing the original input feature vector from the
latent space representation generated by the encoder function. If the input vector
x ∈ Rd is passed through the encoder function fθ(·), then the output will be a latent
representation z = fθ(x) and the input vector can be reconstructed from the latent
space representation z by passing z through the decoder function gϕ(·) to generate
x̂ = gϕ(z).

The parameters θ and ϕ for the encoder and decoder functions, respectively, are
determined by minimizing the difference between the input feature vector and the
reconstructed input feature vector, i.e., the reconstruction error, which is typically
computed as the mean squared error (MSE) loss:

L(x, x̂) =
d∑

i=1

(xi − x̂i)
2

Prior to online operation, the autoencoder is trained only on normal data, thus
enforcing the assumption that there is no labeled data for attacks during design time.
This is beneficial because the autoencoder is able to learn a compact representation
of normal behavior. As a result, any anomalies or malicious activity will cause
a significant increase in the reconstruction error. This concept was demonstrated
empirically in [16], where reconstruction-based detection was shown to achieve nearly
perfect detection rates while simultaneously achieving a very low false positive rate
for a variety of different IoT devices and attack types.

The proposed system utilizes a centralized pre-training strategy during the offline
phase. Specifically, normal data collected from each client is combined to form a
global model W0 during the offline phase. There are two reasons why this design
choice was made. Firstly, utilizing a centralized approach to pre-train the autoen-
coder allows the autoencoder to capture a larger distribution of normal behaviors
from heterogeneous devices. Consequently, this will improve the ability of the au-
toencoder to generalize when the system is deployed. Secondly, utilizing a centralized
pre-training approach provides a stable starting point for the FL process. As such,
the convergence time of the FL process is improved, and the instability that is com-
mon during the first few rounds of FL is reduced. While [18] utilized a completely
decentralized training approach for the autoencoder, a common approach to improve
robustness in federated systems that utilize non-IID data distributions is to use a
centralized warm-start pre-training strategy.

The autoencoder employed in this study uses a symmetric encoder-decoder structure
with progressive decreases in the dimensionality toward a single bottleneck layer.
To enable modeling of complex relationships between system and network features
while also being computationally efficient enough to operate in resource constrained
environments, nonlinear activation functions are employed. Due to the information
compression effect of the bottleneck layer, the autoencoder retains only the most
critical characteristics of normal behavior.

Once the autoencoder has completed centralized pre-training, the model parame-
ters W0 represent a baseline model that is capable of detecting anomalies through



16 3. Design

the calculation of reconstruction error. The parameters W0 are not used to make
predictions or for detection, but rather they serve as a basis for hyperparameter op-
timization and federated training in subsequent phases of the offline pipeline. This
staged approach is based upon the results presented in [18], which demonstrated
that autoencoders can adaptively be trained under FL conditions while maintaining
their unsupervised detection abilities.

The centralized autoencoder pre-training methodology provides a scientifically jus-
tified and empirically supported foundation for the proposed FCDA. Furthermore,
by employing reconstruction-based anomaly detection, the proposed system bene-
fits from the properties demonstrated by previous IoT Intrusion Detection System
(IDS) research, specifically independence from labeled attack data, the resilience to
previously unseen threats, and the potential to utilize FL while expanding these
capabilities to include the deployment in a SDN-IoT enabled network.

3.1.3 Hyperparameter Optimization

Centralized pretraining provides a good starting point for an autoencoder’s initial
model, but the performance and reliability of an autoencoder particularly in a FL
environment depend heavily on its training parameters. Training parameters includ-
ing the learning rate and the number of training epochs can have a direct effect on
how quickly the model will converge, how accurately it will reconstruct data, and
the potential for the model to fit too closely to the normal behavior of local data.
Because data distribution and available resources vary across IoT devices, fixed hy-
perparameter values may produce suboptimal or unreliable performance once the
model is deployed in a heterogeneous IoT environment.

To address this issue, the proposed system includes a dedicated hyperparameter
optimization stage within the offline knowledge generation to optimize the training
parameters of the autoencoder prior to deployment in a FL setting. The hyperpa-
rameter optimization stage uses a systematic exploration of the candidate hyper-
parameter values to find those values that result in minimum reconstruction error
while also providing adequate representation of all clients normal data.

The optimization workflow begins with a centrally pre-trained model W0. Multiple
training trials of the autoencoder are performed using different hyperparameter con-
figurations. For each configuration, the autoencoder is trained on normal data, and
then evaluated based on the reconstruction error metric as defined in Section 3.1.2.
The goal of the optimization process is to identify the hyperparameter configuration
that results in the lowest average reconstruction error thereby enabling the model
to best capture the behavior of normal conditions.

The hyperparameter optimization problem can formally be stated as:

λ∗ = argmin
λ∈Λ

E
[
L(y, f(x;λ))

]
where L(·) is the reconstruction loss and the expectation is taken over normal sam-
ples. This formulation aligns with the unsupervised anomaly detection objective
and avoids reliance on labeled attack data.



3.1. Offline Knowledge Generation 17

The decision to perform hyperparameter optimization offline was made deliberately.
Hyperparameter tuning is computationally intensive, and therefore cannot be done
on resource constrained IoT devices during runtime. However, by performing the
hyperparameter optimization offline, the proposed system ensures that the online
component of the system remains lightweight, while still utilizing training parameters
that were determined through careful selection. Decoupling the hyperparameter
optimization from the deployment process also allows for better reproducibility and
facilitates controlled experimentation during the design phase.

Another aspect of the design involves the relationship between hyperparameters and
FL dynamics. Previous research [18] indicates that autoencoders trained under FL
settings are sensitive to overly aggressive learning rates and excessive local training,
especially when client data is non-IID. Therefore, the hyperparameter optimization
stage focuses on conservative parameter selections that support stable, smooth con-
vergence across clients when aggregated. The selected hyperparameters will serve
as a baseline for subsequent federated training and enable further adaptation during
online operation.

As a result of the hyperparameter optimization stage, a set of valid training con-
figurations are produced that demonstrate improved reconstruction performance.
The valid training configurations are then passed to the model comparison stage
where they are compared to the original pre-trained model to evaluate if there was a
meaningful improvement in reconstruction quality. Only the training configurations
that provide significant improvements in reconstruction quality will be retained for
federated training and deployment.

To sum up, hyperparameter optimization is crucial in bridging centralized pretrain-
ing and FL. Through systematic refinement of training parameters offline, the pro-
posed design increases the reliability of the model, decreases the likelihood of unsta-
ble updates during federated aggregation, and ensures that the deployed clients are
operating with optimized parameters for performing unsupervised anomaly detection
in heterogeneous SDN–IoT environments.

3.1.4 Federated Training with FedAvgM

After the initial centralized pre-training and hyperparameter selection phases, the
proposed system proceeds to a federated training phase to fine tune the intrusion
detection model, while keeping the data local to each client and protecting client
privacy. This second stage was motivated by the fact that, due to their distributed
and heterogeneous nature, IoT environments present different traffic patterns and
resource conditions to each individual device. Unlike traditional approaches which
collect the raw data at a central site, FL allows multiple models to be improved
collaboratively by exchanging model updates, thus minimizing the amount of com-
munication required between clients and servers, and consequently the risks to client
privacy.

In this study, FedAvgM has been chosen as the aggregation method. The moti-
vation behind choosing this specific aggregation method comes from the findings
of several other studies that have shown that standard Federated Averaging (Fe-
dAvg) performs poorly under non-IID client data distributions, a situation common



18 3. Design

in IoT applications. For example, Olanrewaju-George et al.[18] uses FedAvgM for
federated intrusion detection, and it finds that using FedAvgM leads to better con-
vergence stability and less false positives when training unsupervised autoencoders
on heterogeneous IoT devices. Additionally, Hsu et al.[9] systematically analyzes
how non-IID client data affects FL, and it empirically shows that including server-
side momentum in FedAvg helps reduce oscillations and slow convergence that are
often associated with FedAvg.

For clarity, let Wt represent the global model parameters at federated round t, and
let W

(k)
t+1 represent the locally updated model parameters produced by client k after

local training. In standard FedAvg, the global model update is computed as a
weighted average of all client updates:

Wt+1 = Wt +
∑
k∈Kt

nk∑
j nj

(
W

(k)
t+1 −Wt

)

where Kt represents the set of clients involved in federated round t, and nk represents
the number of local samples that client k uses to train its local model.

FedAvgM modifies this basic formula by adding a server side momentum term that
accumulates the update direction over time. First, an aggregated update ∆Wt is
computed as follows:

∆Wt =
∑
k∈Kt

nk∑
j nj

(
W

(k)
t+1 −Wt

)
Then, a momentum vector Mt is updated as follows:

Mt = βMt−1 +∆Wt

Where β ∈ [0, 1) is the momentum coefficient that controls the impact of past
updates. Finally, the global model is updated based on:

Wt+1 = Wt +Mt

The accumulation of historical update information in FedAvgM helps smooth out
sudden changes in model parameters that occur due to conflicting client updates or
large variations in the local gradients among clients. Given the narrow and possibly
biased views of normal behavior that each device may experience in an IoT envi-
ronment, this smoothing property is especially useful for intrusion detection in such
environments, as demonstrated in [18] by the use of FedAvgM for federated autoen-
coder training resulting in more stable reconstruction error distributions and lower
false positive rates than those achieved with FedAvg. Furthermore, [9] supports this
result by showing that FedAvgM achieves consistent convergence even in cases with
extreme non-IID data partitions and partial client participation.

Offline federated training is performed in the proposed architecture to generate a
refined global model that captures the heterogeneity among clients and is stable. Hy-
perparameters optimized in the previous stage are applied during federated training
to ensure that the updates made by each client are localized and do not diverge.



3.1. Offline Knowledge Generation 19

It should be noted that this offline federated training does not eliminate the need
for online adaptation. Instead, it creates a robust global model that can be safely
deployed and further adapted during run-time.

Therefore, the output of this federated training stage is a globally optimized model
that includes both the centralized knowledge and the federated refinement under
non-IID data conditions. Together with the optimized hyperparameters and the
normalization state of the model, this model is the foundation upon which the de-
ployment in the online monitoring stage will take place. By explicitly addressing the
issues created by non-IID data through the use of FedAvgM, the proposed system
aligns itself with current state-of-the-art FL methods and is suitable for anomaly
detection in SDN enabled IoT systems.

3.1.5 Deployment Artifact Generation

The final step of the offline knowledge generation pipeline involves creating a col-
lection of ”deployment artifacts” which allow for an identical and very light-weight
initialization of the proposed system when it is operational online. The goal of this
approach is to export the least amount of information necessary to accomplish infer-
ence, detect anomalies and perform controlled online adaptations rather than export
entire training pipelines or model specifications as was done with prior approaches.

The first piece of information exported by the offline process is the initial model
parameters that were generated after both central pre-training and federated re-
finement. These parameters represent the trained weights of the autoencoder and
will be used as a starting point for runtime inference and any subsequent feder-
ated updates. By only exporting the learned weights, the proposed system avoids
the unnecessary overhead while maintaining full compatibility with the autoencoder
architecture defined on each client.

The second piece of information exported by the offline process is the normalization
state created through the offline preprocessing. The normalization state includes the
parameters necessary to apply Min–Max normalization in the same manner across
all clients to ensure that the feature vectors observed during the online monitoring
period are mapped to the same numeric space as those used during the offline training
period. It is important to maintain a consistent normalization strategy because
inconsistent feature scaling strategies may result in less reliable anomaly score values.

The third piece of information exported by the offline process is a set of client-specific
training and detection parameters, such as the learning rate, the number of local
training iterations and the anomaly detection threshold value for each client. The
values of these parameters are determined during the offline optimization period to
take into consideration the client-side heterogeneity in behavior and resources. By
determining parameters on a per-client basis, the proposed system provides con-
trolled and stable online adaptation while preventing a global parameterization.

In total, the artifacts provided by the offline process create a deterministic and
reproducible initialization state for the online monitoring process. Each client agent
loads the initial model weights, applies the previously defined normalization state,
and operates under the previously validated client-specific parameters from the start.



20 3. Design

This design allows for immediate initiation of anomaly detection upon deployment
of the system without having to conduct local retraining or recalculate parameters,
and provides a well-defined and stable baseline for the subsequent FL.

By defining offline knowledge in terms of lightweight deployment artifacts, the pro-
posed system creates a distinct separation offline optimization and online execu-
tion. This separation results in reduced online computational overhead, improved
robustness in resource constrained environments, and a reliable foundation for the
processes related to online monitoring, detection and federated adaptation discussed
in the next section.

3.2 Online Monitoring, Detection, and Response

The online stage of the proposed system represents the run-time operation of the
FCDA within a live SDN-IoT environment. As such, it differs from the offline stage
in that the focus is placed on continuous monitoring and real-time anomaly detection
as opposed to model construction and optimization. Additionally, due to resource
constraints, the online stage places an emphasis on adaptive learning. Designed
for autonomous operation, the online stage utilizes deployment artifacts generated
during the offline stage to provide immediate functionality upon startup.

Upon startup, lightweight client agents deployed on IoT Hosts continuously collect
system level and network level metrics, normalize those metrics through a fixed nor-
malization policy. Then apply those metrics to the autoencoder model deployed at
each host site. As a result, the anomaly detection mechanism operates in real-time
utilizing the reconstruction error metric thereby enabling the system to detect devi-
ations from learned normal behavior independent of labeled attack data. Moreover,
the anomaly detection mechanism operates independently of FL rounds, thereby
providing continuous security monitoring regardless of training coordination.

In addition to online federated adaptation, the system also allows for collaborative
refinement of the detection model among the client agents. Selective and condi-
tional local training is allowed, provided there is availability of high-confidence nor-
mal samples and server side client selection. Updates to the detection model are
aggregated by the central federated server through the use of FedAvgM and sub-
sequently distributed back to the clients, thus allowing for gradual adaptation to
evolving workloads and network conditions while maintaining data locality.

Figure 3.2 represents the online monitoring and FL workflow, illustrating the inter-
action between the client agents, the federated server and the decision logic utilized
to make anomaly detection decisions. The remainder of this section will detail the
design of the online stage of the system, including but not limited to system deploy-
ment assumptions, continuous monitoring and feature extraction, anomaly detection
mechanisms, FL coordination and response scope.



3.2. Online Monitoring, Detection, and Response 21

Monitoring, Anomaly Detection & Response

D
ep

lo
ym

en
t

Deploy topologies with
limited resources

Is network running?
NoYes

Initial / Final Model Weights
Client-specific Parameters
Detection Thresholds
Scaler State

Deployment Artifacts

M
on

ito
rin

g 
&

 D
et

ec
tio

n

FL

MSE >
Threshold?

No

Yes

Collect metrics (Hardware & network)
Apply Preprocessing (MinMax Scaler)
Train Local Model (Autoencoder)
Send Updates to Server

Host

Aggreate Local Model Updates
(FedAvgM)
Update Golabl Model
Distribute Global Model back to Host

Server

R
es

po
ns

e 
&

 M
iti

ga
tio

n

Attack Detected
Notify CDA

Continuous Loop

Figure 3.2 Online Training.

3.2.1 System Deployment in MininetFed

The online stage of this proposed system will be executed on an emulated environ-
ment using a MininetFed [21] based simulation environment, to provide a reliable



22 3. Design

testing of FL in SDN and resource constrained environments. MininetFed adds to
Mininet the support for FL and containerized hosts with configurable resource limits,
to model the deployment of SDN enabled IoT systems.

In the proposed implementation, every IoT device is modeled by a lightweight con-
tainerized host, and a client agent runs on each of them. Each client agent has three
main functions, namely monitoring, anomaly detection and training of the local
model. Every client is run inside a container with very limited computing resources
like CPU shares and memory, in order to represent the operational limitation of real
world IoT devices. Since there are no resource limitations enforced at deploy time
in the proposed design, the operational resources of each component in the online
part of the system can be evaluated in the most realistic way possible.

Next to the client hosts, a federated server is deployed to manage the FL rounds.
The server is responsible for the client registration, for selecting the participants
for a round of FL, for aggregating the local model updates from the participants,
for distributing the updated global model parameters to the participants. However,
the server never accesses the raw monitoring data gathered by the clients. All the
interactions between the clients and the server are limited to exchanging model
updates and additional training metadata. This design choice preserve the data
locality and thus complies with the objective of preserving privacy of FL.

To enable the communication between the different parts of the system, a mes-
sage oriented publish-subscribe protocol is used. This communication layer allows
the clients to work asynchronously and independent of each other, and allows the
clients to continue their monitoring tasks and participate in federated training rounds
whenever they want, and whenever they have the possibility to do so. Therefore, the
monitoring of anomalies continues to run even if the federated training is delayed or
temporarily unavailable.

Additionally, to the components described above, the proposed system includes a
logically separated SDN control plane. Although the proposed system does not
enforce directly any mitigation action at the controller level, the proposed system is
compatible to integrate such a functionality. Thus, the proposed system separates
clearly the responsibilities of the control plane of the network from the responsibilities
of the detection and response plane, to allow the integration of such a functionality
in the future to automate the enforcement of mitigation actions without modifying
the core detection and learning functionalities.

When the client agents are initialized, they load the deployment artifacts produced
during the offline phase, i.e., the initial model weights, the normalization parameters
and the client specific training and detection configurations. This initialization will
enable the client agents to initiate the detection of anomalies immediately upon the
activation of the network, without requiring an additional centralized training phase.
As subsequent data becomes available, the models will then be progressively refined
via FL.

Therefore, the deployment of the proposed system in a MininetFed based environ-
ment, offers a controlled but realistic scenario for the execution of the proposed
online design. The combination of the use of containerized IoT hosts, a federated
coordinator server and a communication layer allows the system to model the op-



3.2. Online Monitoring, Detection, and Response 23

erational constraints and the distributed nature of the SDN-IoT networks, while
supporting continuous monitoring and adaptive learning.

3.2.2 Continuous Monitoring and Feature Extraction

Client agents are always monitoring both the network level and the host level of
their system’s behavior in real-time to enable timely and context aware anomaly
detection. Since typical IoT devices are subject to limited CPU and memory, exces-
sive or intrusive monitoring can cause a degradation of normal operation, exhaust
resources that affect the monitoring process, or even cause an additional resource
consumption. For this reason, the client agent monitoring process was developed to
be lightweight and non intrusive, while at the same time obtaining enough informa-
tion to adequately characterize both normal and abnormal system activity.

The host level of monitoring is focused on metrics which describe the computational
state of the device. Metrics such as CPU utilization, memory usage, process activity,
and short term system load, will help identify whether a system is experiencing re-
source starvation, an abnormal execution pattern, or a sudden increase in workload.
Collecting the above mentioned metrics directly from the client agent’s operating en-
vironment allows the system to detect local effects that would be difficult to detect
via network observation.

Simultaneously, network level monitoring captures characteristics of the traffic of the
system. Instead of examining packets in detail or keeping track of flows, the proposed
design will monitor the system’s traffic passively, aggregating the collected statistics
in fixed duration time windows. Statistics collected include packet count, protocol
distribution, diversity of sources and destinations, and connections. Since the agent
does passive monitoring there is no additional traffic introduced by the monitoring
system and the normal operation of the network should remain unchanged.

Feature extraction occurs over short, fixed duration time windows. Each window
produces a small feature vector that contains a combination of the host and network
measurement features. Each feature vector represents one snapshot of the system’s
behavior during a given time window and is the input to the anomaly detection
model. The selected feature set has balance of expressiveness and efficiency to allow
the anomaly detection model to detect correlated anomalies in both the computation
and communication dimension without adding too much run time cost.

Each feature vector extracted is normalized by the fixed normalization state created
during the offline phase before it is sent to the anomaly detection model for evalu-
ation. Normalization is used to ensure that the training and inference distributions
of the anomaly detection model are similar and prevent large scale differences from
affecting the results of the reconstruction error. Normalization is applied locally and
deterministically so that the system behaves uniformly across all clients regardless
of their hardware differences.

Monitoring and feature extraction are decoupled from the FL process, ensuring that
anomaly detection remains operational regardless of a client’s participation in train-
ing rounds. This decoupling of monitoring from learning is a key design decision
and provides the system with the flexibility to perform security monitoring while
allowing for the concurrent development of the models.



24 3. Design

In summary, continuous monitoring and feature extraction are the primary inputs to
both the anomaly detection model and the FL model. The proposed design provides
real-time situational awareness and is capable of functioning within the constraints
of an SDN-IoT environment due to the use of low-weight host level metrics, passive
network observations, and consistent normalization.

3.2.3 Anomaly Detection Mechanism

The proposed system utilizes an autoencoder based anomaly detection method,
which utilizes an unsupervised approach to learn the normal behavior of the sys-
tem. During operation, the model reconstructs input feature vectors and uses a
reconstruction-based anomaly score to quantify deviations from learned normal pat-
terns. Detection occurs locally at each client and is independent of the FL process,
ensuring quick anomaly identification without relying on training schedules or com-
munication delays.

Each monitoring cycle, a client agent will create a normalized feature vector x ∈ Rd

(where d represents the number of monitored features). The normalized feature vec-
tor will be processed by the deployed autoencoder model to produce a reconstructed
version of the normalized feature vector x̂. The anomaly score is defined as the mean
squared reconstruction error:

A(x) =
1

d

d∑
i=1

(xi − x̂i)
2

This score measures the degree to which the actual behavior of the system corre-
sponds to the normal operating conditions that were learned during the offline phase
of the development of the autoencoder. Since the autoencoder was developed only
with normal data during the offline phase, normal observations should have low
reconstruction errors, while any malfunctions or attacks could produce larger errors.

Anomalies can be detected based on a threshold-based decision rule. Let τ represent
the anomaly detection threshold established during the offline phase of the develop-
ment of the system. Then the decision regarding whether a particular observation
x represents normal or anomalous behavior is as follows:

Decision(x) =

{
Anomalous, if A(x) > τ,

Normal, otherwise.

This decision rule allows the system to immediately raise an alarm when it detects
any suspicious behavior, without any need to consider past history or to process
the observations in batches. Additionally, since the threshold value is established
initially before deploying the system, the system will exhibit deterministic and repli-
cable detection behavior for all clients at start up.

To provide stable adaptive behavior during online use of the detection mechanism, it
also differentiates between normal behaviors with a very small reconstruction error,
and those that fall in an intermediate region (borderline cases). If the reconstruction



3.2. Online Monitoring, Detection, and Response 25

error associated with a particular observation is significantly less than the threshold
value, the observation is assumed to be a reliable example of normal behavior, and
the observation may be saved to support local training during FL, as outlined in
Algorithm 1. This design helps to prevent the inclusion of corrupted or uncertain
samples into the training process, thus maintaining the integrity of the model.

Require: Normalized feature vector x, autoencoder model f(·), threshold τ
Ensure: Detection decision and optional training sample update

1: Receive normalized feature vector x
2: Compute reconstruction x̂← f(x)
3: Compute anomaly score A(x)← MSE(x, x̂)
4: if A(x) > τ then
5: Raise anomaly alert
6: Mark sample as anomalous
7: else
8: Mark sample as normal
9: if A(x) ≤ α · τ then
10: Add x to local training buffer
11: end if
12: end if

Algorithm 1 Anomaly detection at client agent

The confidence factor α ∈ (0, 1) controls how strictly normal samples are selected
for local training.

Since the anomaly detection mechanism is lightweight and executed locally at each
client, it requires only a single forward pass through the autoencoder per observation.
This results in low computational overhead and enables real-time anomaly detection
even on resource-constrained devices, making the approach suitable for continuous
deployment in SDN-IoT environments.

In summary, reconstruction-based anomaly detection provides a principled and effi-
cient basis for detecting anomalous behavior in SDN-IoT systems. The combination
of fixed threshold values, confidence-aware sample selection, and continuous opera-
tion ensures the reliability of the detection mechanism while allowing for safe online
adaptation through FL.

3.2.4 Online Federated Adaptation

To allow the continual update of the detection model as the network changes, the
proposed system leverages online federated adaptation as a background process that
runs alongside the real-time anomaly detection. In contrast to the communication
round process seen in traditional FL workflows, the proposed design opts for condi-
tional and opportunistic training that takes advantage of safe, informative learning
opportunities that avoid wasting resources where possible.



26 3. Design

3.2.4.1 Conditional Local Training

Local model training on each client is performed under conditional statements around
observables and confidence in behavior. Rather than training on every observation
the system observes, we selectively accumulate feature vectors classified as high con-
fidence normal by the anomaly detection process in Section 3.2.3. Training on false
or suspiciously ambiguous observations would pollute local training.

Rather than train on every observation however, we condition local training on
accumulation of a sufficient number of observations such that training to statistical
meaningfulness is done, and only where previous high-confidence confirmation can
be relatively assured not to be a spurious event. Doing so reduces risk of chaotic
updates when various observations are sparse or extreme, a process particularly
risky in intrusion detection. Inclusion of any attack traffic risks degrading model
accuracy severely. Local training is therefore performed at intermittent intervals
and its retention in the buffer cleared after every training round.

3.2.4.2 Client Selection

Not all clients participate in all rounds of FL. On the server’s side, there is a mecha-
nism for client selection which specifies which update-contributing clients are allowed
in every FL round. This technique makes FL accommodating to heterogeneous avail-
ability and resource conditions, and asynchronous client operation.

By separating monitoring from active training participation, our design insures that
the clients are protected even when they are not selected for FL. Client selection re-
duces the communication required and avoids establishing an uncertain aggregation
of poor-quality updates.

3.2.4.3 Server Aggregation Loop

The federated server orchestrates each round of training by harvesting local model
updates and then redistributing the updated global model. This is another con-
tinuous server loop, again running without regard to any anomaly detection and
monitoring activities running on the clients.

Each round, the server waits for updates from clients participating in the round. It
aggregates only the updates tied to “valid” local training. Clients that did not meet
training conditions or contributed only zero effective samples are not aggregated, in
order to keep their “damaging” updates from disturbing the global update process.
After aggregation, it broadcasts the updated global parameters out to all the clients.

This asynchronous and serially iterative aggregation loop operation allows the system
to adapt incrementally and without strict synchronization across clients.

3.2.4.4 Connection to FedAvgM

Aggregation is performed using federated averaging with server momentum, as de-
scribed in the offline design stage 3.1. In online adaptation, FedAvgM is used to



3.2. Online Monitoring, Detection, and Response 27

stabilise the global updates from the clients, mitigating issues that arise from hetero-
geneous, possibly non-IID client data. By incorporating information from historical
updates at the server, FedAvgM reduces the impact of noise and abrupt parameter
changes caused by diverging local updates.

Importantly, the online adaptation phase utilizes the same aggregation principles
that were proven to be valid in the offline phase, thereby providing conceptual con-
sistency between design time training and runtime learning. This continuity enables
the system to take advantage of FL while exhibiting predictable and controlled be-
havior.

3.2.4.5 Stability Safeguards

To further enhance robustness during online adaptation, the proposed design in-
corporates several conceptual stability safeguards. First, local updates are scaled
conservatively to prevent excessive deviation from the current global model. Sec-
ond, aggregation explicitly excludes updates from clients that lack sufficient training
data, reducing the influence of unreliable contributions. Third, the system maintains
a fallback mechanism that allows clients to revert to a previously stable model state
if abnormal behavior is detected following an update.

These safeguards collectively ensure that online federated adaptation improves the
detection model gradually and safely, without compromising the reliability of anomaly
detection. By prioritizing stability over aggressive optimization, the proposed design
aligns with the operational requirements of security-critical SDN–IoT environments.

3.2.5 Response Strategy and System Scope

The response strategy of the proposed system is designed to support reliable anomaly
detection and adaptive learning while maintaining a clearly defined scope of responsi-
bility. Once the FCDA identifies anomalous activity at a client, the system generates
an alert indicating the presence of a potential attack or abnormal behavior. The alert
represents the end product of the detection process and also serves as the connection
between the proposed FCDA and the external response mechanism.

Instead of attempting to enforce the mitigation of the identified threat, the FCDA
will forward the alerts from the detection component to an existing CDA. The CDA
as described in prior research, is a policy aware and contextually driven mitigation
component capable of performing actions such as changing flow rules, switch iso-
lation, controlling traffic rates, or reassigning controllers. By forwarding the alerts
to the CDA instead of attempting to perform the actual mitigation, the proposed
design eliminates duplicated response logic and ensures that the identified threats
are acted upon in a timely and controlled manner.

As stated previously, the separation of the detection from the response mechanisms
is purposeful. In order to effectively respond to anomalies in SDN-IoT environments,
response decisions are made based on multiple variables including; network policy,
operational environment, and the level of risk associated with a particular action.
Therefore, making automatic mitigation decisions based solely on the outputs of



28 3. Design

the detection process may result in risks including the interruption of normal traffic
flows and potentially negative consequences of false positives or transient anoma-
lies. By isolating the detection and learning processes of the FCDA and delegating
the decision-making authority for response actions to the CDA, the proposed de-
sign minimizes the occurrence of premature and/or potentially harmful responses to
anomalies.

In terms of architectural considerations, the proposed design allows for the seamless
interaction between the FCDA and the CDA. The structured input provided by the
FCDA to the CDA as a result of the detection of anomalies, enables the development,
refinement, and deployment of response strategies independent of the detection and
learning mechanisms of the FCDA. As a result of this modular architecture, the
proposed design supports a high degree of adaptability across various deployments
and enables response policies to evolve without the need for changes to the underlying
detection framework.

In summary, the establishment of the system boundaries, as defined in the proposed
design, enhance the reliability and usability of the proposed system in security crit-
ical environments. The FCDA retains the responsibilities of continuous monitoring,
anomaly detection, and model refinement using FL. In contrast, the CDA retains
the responsibilities of network control and enforcement. The clear definition of re-
sponsibilities provides scientific rigor and adheres to recognized best practices for
designing secure SDN architectures.



4
Evaluation

4.1 Motivational Analysis: Impact of Network At-
tacks on Host Hardware Resources

Before designing and implementing the FCDA, we conducted an initial investigation
of the relationship between network based attack and hardware resource utilization
at the host level. The preliminary investigation was based upon the understanding
that most IoT and Edge devices are constrained in terms of their available hardware
resources, and that if an excess amount of these hardware resources are being utilized;
it could be considered a type of service degradation or denial, even though the
network may not be completely saturated.

In order to examine this relationship empirically, controlled volumetric attacks were
run in an emulated environment and hardware resource metrics were collected from
the individual hosts. The metrics that were collected were the CPU usage and
memory usage of each host during both normal operation, and while executing SYN
flood, ICMP flood, and UDP flood attacks. These attacks were chosen as they
represents common forms of volumetric DoS attacks.

Figure 4.1 demonstrates the CPU and memory usage of hosts over time during a
SYN flood attack. During the attack, CPU usage increased rapidly and remained
at a high level for the duration of the attack window, returning to baseline levels
shortly after the attack concluded. However, memory usage did not follow the same
pattern and showed a gradual rise in usage that remained elevated for a much longer
duration and continued to remain elevated long after the attack traffic had stopped.



30 4. Evaluation

0

10

20

30

40
CP

U
 U

sa
ge

 (
%

)

CPU Usage Over Time
sta0
sta1
sta2
sta3

0 10 20 30 40 50 60 70
Time (samples)

50

55

60

65

M
em

or
y 

U
sa

ge
 (

%
)

Memory Usage Over Time

sta0
sta1
sta2
sta3

Figure 4.1 SYN Flood

In comparison, ICMP flood attacks have a greater negative effect on the host as
shown in Figure 4.2. In the ICMP flood attack, CPU usage climbed very rapidly to
nearly maximum capacity on affected hosts for extended durations. This behavior
is consistent with the large amount of processing required to handle the high rate
of ICMP traffic being sent to the host, and indicates a high likelihood of disrupting
services to the host under sustained attack conditions. Memory usage also contin-
ued to climb steadily throughout the attack window and remained elevated, which
demonstrates that ICMP floods cause continuous computational and memory stress
to host devices.

0

20

40

60

80

100

CP
U

 U
sa

ge
 (

%
)

CPU Usage Over Time
sta0
sta1
sta2
sta3

0 10 20 30 40 50 60
Time (samples)

60

70

80

90

M
em

or
y 

U
sa

ge
 (

%
)

Memory Usage Over Time
sta0
sta1
sta2
sta3

Figure 4.2 ICMP Flood

As indicated in Figure 4.3, CPU usage during the execution of a UDP Flood Attack
did not reach the same extreme levels seen in the ICMP Flood Attack, but it was still
significantly higher than the baseline for the duration of the attack. Memory usage
again demonstrated a consistent upward trend in usage throughout the attack win-
dow, which reinforced the conclusion that volumetric network attacks consistently
create non-trivial memory requirements for host devices, irrespective of the protocol
used to conduct the attack.



4.2. Experimental Environment and Setup 31

0

20

40

60

80

CP
U

 U
sa

ge
 (

%
)

CPU Usage Over Time
sta0
sta1
sta2
sta3

0 10 20 30 40 50 60
Time (samples)

50

55

60

65

M
em

or
y 

U
sa

ge
 (

%
)

Memory Usage Over Time
sta0
sta1
sta2
sta3

Figure 4.3 UDP Flood

Collectively, the Figures clearly show a strong association between volumetric net-
work attacks and host-level hardware stress. CPU usage appears to respond very
rapidly to attack traffic and then returns to its baseline state. On the other hand,
memory usage continues to grow throughout the attack and may remain elevated
for a much longer period of time than CPU usage. Furthermore, the variability
in resource impacts among hosts even in identical attack conditions, which further
emphasizes the heterogeneity present in distributed environments.

These findings have provided important insights regarding the shortcomings of network-
only intrusion detection techniques. Network traffic patterns can reveal anomalies
in packet behavior, but they cannot identify the stress that individual devices ex-
perience as a result of attacks. Therefore, as a result of the lack of direct access
to per-host CPU and memory usage by the controller in SDN-IoT environments,
centralized detection is insufficient for detecting resource degradation due to attack.

Figures 4.1-4.3 provided the empirical basis for the proposed FCDA framework. By
allowing each client to collect both network and hardware metrics locally, and by
having clients share learned representations instead of raw data through FL, the
proposed solution addresses both the visibility and scalability issues. This analysis
provides empirical justification for including host-level hardware resource awareness
into distributed intrusion detection systems, especially those deployed in resource
constrained IoT environments.

4.2 Experimental Environment and Setup

In this section, we describe the experimental setup and environment of the proposed
FCDA, which will be evaluated based on experiments carried out with a controlled
emulation platform to guarantee the reproducibility of results and accurately repre-
sent the operational constraints present in SDN-based IoT systems.



32 4. Evaluation

4.2.1 MininetFed Testbed Configuration

The experimental evaluation was conducted using MininetFed [21] version 1.0.2, ex-
ecuted on a local machine. MininetFed provides a testing environment to emulate
SDN-based IoT systems that include both SDN, containerized hosts, and FL work-
flows; thus, allowing us to perform evaluations of distributed learning-based security
mechanisms under constrained environments.

Ubuntu 20.04.6 LTS was installed as the host operating system, and containerized
components were created using Docker version 28.1.1. Each of the emulated IoT
hosts and the federated server were instantiated as Docker containers to enable
detailed control over computational resources, including CPU shares and memory
limits.

Asynchronous, decoupled communication between distributed components was achieved
through an MQTT-based publish–subscribe mechanism. Mosquitto, the MQTT bro-
ker, was also included with the MininetFed framework. When the experiment began,
the broker was run in a separate Docker container. No manual configuration or in-
stantiation of the broker was required; rather, it was automatically managed by
MininetFed during the experimental workflow. This allowed continuous, uninter-
rupted communication between client agents and the federated server during each
experiment.

Component Description
Emulator MininetFed v1.0.2
Execution Mode Local machine
Operating System Ubuntu 20.04.6 LTS
Container Engine Docker 28.1.1
Communication MQTT (Mosquitto, via MininetFed)

Table 4.1 Testbed Configuration

4.2.2 Network Topology and Resource Constraints

All experiments used a single-switch SDN topology consisting of one OpenFlow
switch and four host nodes, each representing an IoT client. This allowed us to test
how resource restrictions affect both the learning dynamics and resource limitations
while still providing centralized SDN control via a single forwarding element.

A remote SDN controller based on Ryu was used to manage the network. The Ryu
controller was run outside of the MininetFed environment and communicated with
the emulated switch through the control channel. This setup is similar to real-world
SDN deployments where the controller runs separately from the data plane and client
hosts.

To evaluate the behavior of our proposed system under different resource levels, we
ran numerous experiments with varying CPU and memory constraints applied to
the client containers. We used Docker CPU shares to limit CPU utilization, and we
placed memory limits on the containers to limit memory use. These are examples
of how we simulated heterogeneous IoT devices.



4.2. Experimental Environment and Setup 33

sta0 sta1 sta2 sta3

RYU Controller

OpenFlow
Switch (S1)

Figure 4.4 Four Client Topology

In Experiments 1–3, a single run of the experiment had multiple sessions; each ses-
sion contained different attackers and victims. Experiment 4 comprised five separate
experimental runs using the same resource configuration but varying attack scenar-
ios.

Experiment CPU Shares Memory Limit Notes
1 10 50 MB Single experiment with multiple sessions
2 20 100 MB Single experiment with multiple sessions
3 50 256 MB Single experiment with multiple sessions
4 10 512 MB Five independent experiments with different attackers and victims

Table 4.2 Client Resource Constraints Across Experiments

4.2.3 Experiment Duration

The experiment duration was chosen to ensure adequate time for the system to be in
normal operational mode and to execute attacks to collect sufficient data for analy-
sis. The average time for Experiments 1-3, which included multiple sessions within
an experiment, was 48 minutes per experiment. The average time for Experiment
4, which included separate runs, was 30-35 minutes per run. These durations were



34 4. Evaluation

chosen to capture representative system and network information under different re-
source constraints and attack scenarios, to construct datasets for subsequent training
and evaluation.

4.3 Data Collection Methodology

This section describes the methodology used to collect, label, and organize the
dataset employed for offline training and validation of the proposed FCDA. The data
collection methodology was based on collecting both normal and malicious behavior
in SDN-based IoT environments, while maintaining local and temporal consistency
for each client.

4.3.1 Attack Scenarios

Three types of volumetric network attacks were selected for generating representative
malicious behavior in order to simulate DDoS type attacks: UDP flood, SYN flood,
and ICMP flood; these types of attacks are chosen because they have been shown to
be prevalent in many DDoS type attacks, and can cause both network and resource
usage on hosts to be stressed.

The attacks were generated using hping3 [20], and executed from within the MininetFed
hosts. To increase traffic volume and variability, attack traffic was generated using
various hping3 options, such as --flood and --rand-source. The roles of attackers
and victims were alternated across the four emulated hosts, and the role of each client
pair was changed in each experimental session to avoid bias toward any particular
client pair.

Each attack session consisted of two intervals. First, an interval of normal behavior
occurred prior to the execution of the attack session, and second, an interval of
cooldown behavior occurred immediately after the conclusion of each attack session.
The fixed duration of each attack session was three minutes, allowing sufficient time
for each session to be clearly distinguished as either normal or malicious behavior,
and enabling reliable labeling of all collected data during each experiment. Each
experiment included multiple attack sessions; the roles of attackers and victims were
alternated in each session, and different attacker-victim combinations were used in
each session.

Attack Type Tool Used Execution Scope Duration
UDP Flood hping3 Host-to-host 3 minutes
SYN Flood hping3 Host-to-host 3 minutes
ICMP Flood hping3 Host-to-host 3 minutes

Table 4.3 Attack Types and Characteristics.

Despite being effective at generating a stress on both network traffic and host-level
consumption of resources, these attack scenarios are restricted to monotonically in-
creasing, network-layer attacks of fixed duration. This choice of attack type simplifies



4.3. Data Collection Methodology 35

the experimental setup and makes it trivial to label the resulting dataset, but misses
a number of contemporary DoS attacks.

To mitigate this limitation, we report the experiment results in the evaluation phase
by attack type. In Section 4.6.3 we discuss detection behavior and errors specific
to UDP, SYN, and ICMP floods, and draw attention to differences in Recall and
false-negative rates in different attacks. In this way, detection performance is not
merely evaluated in aggregate, but with respect to specific attack-types.

More advanced attack classes, such as HTTP floods, Slowloris attacks, DNS am-
plification, and other application-layer or low-rate attacks are not examined within
the scope of this work. Additional protocol-aware and application-level features
are needed because these attacks usually show more subtle traffic patterns and sus-
tained resource exhaustion effects. Extending the proposed framework to allow such
attacks, as well as including variable and adaptive attack durations, is a key direction
for future work.

4.3.2 Feature Collection Methods

Client-side independent data collection occurred across all client hosts using both
hardware and network-based methods. Collecting data in this decentralized manner
is based on the fact that real-world IoT environments may have limitations, such as
no central location to gather data from all clients.

4.3.2.1 Hardware-Based Features

The following hardware-based features were gathered by accessing the Docker API.
In addition to directly gathering information about the utilization of the resources
available to containers, the Docker API also provides an opportunity to observe the
behavior of processes running within those containers. The collected hardware-based
metrics are summarized in Table 4.4.

Category Metric Name
CPU Utilization cpu percent

Memory Utilization
memory percent
memory usage mb
memory limit mb

Process Activity
process count
thread count

System Load load avg 1min

Table 4.4 Hardware-Based Metrics Collected via the Docker API

The hardware-based features provide measures of the computational load experi-
enced by a device, the pressure it experiences due to memory, and the number of
active processes at a given time. These are among the most important features for
identifying whether a resource-exhausting attack has occurred.

Hardware metrics were sampled at a fixed interval of 3 seconds, providing a balance
between temporal resolution and monitoring overhead.



36 4. Evaluation

4.3.2.2 Network-Based Features

Scapy [5] was used to create network-based features. Using Scapy enabled conduct-
ing passive packet inspections at the host level. All clients collected and processed
their own traffic. The network-based features created from the collected traffic are
summarized in Table 4.5.

Category Feature Name
Traffic Volume total packets

total bytes
Flow Diversity unique src

unique dst

Protocol Distribution
proto tcp
proto udp
proto icmp

TCP Behavior syn count

Table 4.5 Network-Based Features Extracted from Collected Traffic

Network features were aggregated over the same 3-second interval used for hardware
metrics. This ensured temporal alignment between system-level and network-level
observations.

4.3.3 Dataset Labeling Strategy

To ensure accurate labeling, a time-based labeling methodology was used. For each
attack session, a timeline document is produced with two entries: one denoting the
beginning of the attack and one denoting its end. Each entry contains a timestamp,
the attacker, the victim, the type of attack, and the attack rate.

Sample labels are determined by the temporal overlap between collected sample
timestamps and attack interval definitions found in the timeline document. Sample
timestamps that fall inside of the attack interval are classified as malicious (1),
whereas all other samples are classified as normal (0).

Hardware and network metrics were first collected together in a single CSV file per
client. These files are labeled and merged with the timeline file using timestamp
alignment to ensure that the features and labels are synchronized correctly.

4.3.4 Dataset Organization

During each experiment, each client host independently generates its own dataset
file. The dataset files contain a client id field (e.g., sta0, sta1, sta2, sta3) and a
timestamp to allow for preservation of client-level identity. After each experiment,
the labeled per-client datasets are merged into a single dataset containing the ex-
periment’s results. In addition, datasets from all experiments are combined into a
single, consolidated dataset.

All of the collected dataset files are stored in CSV format. The organization of the
dataset allows for per-client analysis to be conducted, while allowing for centralized



4.4. Offline Dataset Preparation and Feature Selection 37

offline processing for the purposes of training and validating client models. The
dataset’s organization enables per-client analysis and centralized offline processing
for training and validating client models.

The collected dataset was used exclusively for offline training and validation. A
portion of the dataset (20%) was reserved as global test data, later used during
online evaluation to measure detection performance in terms of Accuracy, Precision,
Recall, and F1-score across client models. The remaining data was used for offline
model training and threshold estimation.

Table 4.6 summarizes the distribution of normal and attack samples across individual
client datasets.

Client ID Normal Samples Attack Samples SYN FLOOD UDP FLOOD ICMP FLOOD
sta0 2732 1074 156 617 301
sta1 2817 1098 484 614 0
sta2 2376 1053 818 235 0
sta3 2804 1130 828 0 302

Table 4.6 Distribution of Normal and Attack Samples Across Clients

4.4 Offline Dataset Preparation and Feature Selec-
tion

This section provides an overview of preparing the offline dataset and selecting fea-
tures for the anomaly detection model’s training input. The objective of this stage
is to produce a set of features that are informative, non-redundant and compact to
support effective unsupervised learning and are deployable in resource constrained
IoT environments.

4.4.1 Dataset Cleaning and Normalization

Following data collection and label assignment, the offline dataset was processed
through several steps to prepare it for use with the anomaly detection model. Sam-
ples in the dataset with either missing values NaN or infinite values were removed.
Infinite values were initially converted to missing values and then discarded as they
could cause numerical instability issues with the training process.

Feature normalization was performed using Min–Max scaling, mapping all feature
values into the range [0,1]. The scaler was fitted to the entire dataset collected from
all clients, allowing the same normalization scheme to be applied to each client’s
data when deploying the model. This prevents differences in how different clients
scale their feature data from affecting the parameters of the model.

After normalization step, the dataset was divided into separate datasets for each
client using the client_id attribute. This maintained the ability to access client
specific data, but also provided a global representation of feature space for each
client.



38 4. Evaluation

4.4.2 Training Data Composition

The anomaly detection model was trained only using normal samples, which follows
common practices for reconstruction based anomaly detection models. All samples
labeled as attacks were excluded from the training phase. This allows the autoen-
coder to train on a compact representation of normal system behavior without being
influenced by abnormal patterns represented in the attack samples.

All attack samples were reserved for validation and evaluation purposes. Evaluating
the anomaly detection model was done using a mixed dataset with both normal
and attack samples to determine detection performance and provide a basis for
establishing the threshold for detecting anomalies. This separation ensures that
model training remains unbiased while still enabling quantitative evaluation.

4.4.3 Dataset-Level Analysis of Hardware–Network Relationships

Although the previous exploratory analysis provided an explanation for why the
proposed detection framework includes host level hardware metrics, this section will
provide a formal data-driven analysis of the relationship between network traffic (i.e.,
activity) and hardware resource usage. In particular, this analysis is performed on
the preprocessed and feature-selected subset of the final offline dataset. This is done
to demonstrate that the selected hardware and network features have consistent,
measurable and quantifiable relationships to each other while under attack.

4.4.3.1 Temporal Analysis of Hardware and Network Metrics

Figure 4.5 displays a temporal representation of selected hardware and network
metrics using a relative time reference. The Figure presents CPU utilization, memory
utilization, and SYN packet count over time, with areas of time corresponding to
activity due to attacks highlighted. When operating normally, CPU usage is very
close to the baseline level, memory usage does not vary significantly, and the number
of SYN packets received is very low. These observations are indicative of benign
traffic patterns and idle host behavior.

Upon commencement of attack activity, a marked variation is seen in both domains.
The sharp increase in the number of SYN packets received indicates the start of a
network-based flood attack. Concurrently, CPU utilization rises significantly above
normal levels, with the levels of CPU usage varying at substantially higher levels than
those observed when no attack is occurring. The increased CPU usage is reflective of
the increased processing load that occurs as a result of the high volume of incoming
traffic. The memory usage also increases during periods of attack and remains at
an elevated level even after the volume of incoming traffic returns to normal, which
suggests a persistent strain on system resources.

It should be noted that once the attack has ceased, network metrics return rapidly
to baseline levels, while hardware metrics exhibit a more gradual recovery. This
difference in recovery rates provides insight into the persistent nature of hardware-
related effects beyond the initial period of time when the network-based attack
occurred. This type of behavior is particularly relevant to IoT devices, as prolonged
resource stress can result in decreased quality-of-service or unstable operation.



4.4. Offline Dataset Preparation and Feature Selection 39

0 100 200 300 400 500 600
Time (samples)

0

10

20

30

40

50

60

H
ar

dw
ar

e 
U

ti
liz

at
io

n 
(%

)

CPU (%)
Memory (%)

Attack Period
SYN Count

0

500

1000

1500

2000

2500

3000

3500

SY
N

 C
ou

nt

Figure 4.5 Hardware and Network Behavior Over Time (Relative Time)

4.4.3.2 Correlation Between Hardware and Network Metrics

To further quantify the relationship between the usage of selected hardware resources
and the activity of network traffic, Figure 4.6 depicts a correlation heatmap com-
puted accross selected hardware and network metrics. The results indicate strong
positive correlations between CPU usage and network traffic metrics such as total
number of packets and number of SYN packets. The load average metric also ex-
hibits a strong positive correlation with the intensity of network traffic, which is
indicative of the cumulative effect of continuous processing of network traffic on
system workload.

cp
u_

pe
rc

en
t

m
em

or
y_

pe
rc

en
t

pr
oc

es
s_

co
un

t

lo
ad

_a
vg

_1
m

in

to
ta

l_
pa

ck
et

s

sy
n_

co
un

t

un
iq

ue
_s

rc

cpu_percent

memory_percent

process_count

load_avg_1min

total_packets

syn_count

unique_src

0.32

0.31 0.37

0.65 0.27 0.22

0.96 0.31 0.20 0.69

0.96 0.31 0.20 0.69 1.00

0.47 0.49 0.61 0.23 0.39 0.39

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.6 Correlation Between Hardware and Network Metrics



40 4. Evaluation

Moderate correlations exist between memory usage and network metrics, which sug-
gest that although memory usage increases during attack scenarios, memory usage
can be affected by other system factors including buffering and process lifecycle man-
agement. A moderate correlation exists between process count and the diversity of
sources and destinations, which suggests that traffic patterns resulting from attacks
can indirectly affect the processes active on the host.

These correlations quantitatively validate that network-based attacks do not simply
result in abnormal traffic patterns but also create measurable stress on host-level re-
sources. These correlations substantiate the incorporation of hardware metrics along
with network metrics in the proposed FCDA framework and provide empirical sup-
port for the hypothesis that concurrent monitoring improves visibility of anomalies,
particularly in resource-constrained environments.

4.4.3.3 Implications for Joint Monitoring in IoT Environments

The findings of this section demonstrate that network-based attacks create simul-
taneous deviations in both the network and hardware domains. Therefore, reliance
on solely network features could potentially overlook early or subtle signs of attack-
induced resource stress, particularly in IoT deployments where even slight increases
in CPU or memory usage can be critical. Incorporating metrics related to usage
of available host-level resources into the detection pipeline enables the proposed
FCDA framework to capture a broader operational context and therefore enables
the development of a more robust and resilient anomaly detection capability.

This empirical study provides the foundation for the feature selection process dis-
cussed in subsequent sections and provides justification for the decision to combine
hardware and network metrics within a FL based detection architecture.

4.4.4 Feature Redundancy Analysis

Prior to reducing the number of features, a Pearson correlation analysis was applied
to the entire set of collected features. A correlation heat map of this analysis is
presented in Figure 4.7.

As illustrated in Figure 4.7, there were many features that had significant linear
correlation to one another. More specifically, features that represent network traffic
volume metrics as well as those representing process metrics correlated very strongly.
There were also strong correlations between certain packet level volume features as
well as between process and thread count features. These strong correlations suggest
that there is redundancy in these features, which could result in retaining all of them
in the model and therefore increase its complexity without providing significantly
more information.

Instead of setting a predetermined correlation threshold to eliminate redundant fea-
tures, the results of the correlation analysis were used to assist with selecting features
based on their relationship to other features.



4.4. Offline Dataset Preparation and Feature Selection 41

cp
u_

pe
rc

en
t

m
em

or
y_

pe
rc

en
t

m
em

or
y_

us
ag

e_
m

b

m
em

or
y_

lim
it

_m
b

pr
oc

es
s_

co
un

t

th
re

ad
_c

ou
nt

lo
ad

_a
vg

_1
m

in

to
ta

l_
pa

ck
et

s

to
ta

l_
by

te
s

un
iq

ue
_s

rc

un
iq

ue
_d

st

pr
ot

o_
tc

p

pr
ot

o_
ud

p

pr
ot

o_
ic

m
p

cpu_percent

memory_percent

memory_usage_mb

memory_limit_mb

process_count

thread_count

load_avg_1min

total_packets

total_bytes

unique_src

unique_dst

proto_tcp

proto_udp

proto_icmp

-0.17

-0.02 0.45

0.18 -0.81 0.03

0.31 0.07 0.10 -0.03

0.31 0.07 0.10 -0.03 1.00

0.12 -0.27 -0.18 0.15 0.01 0.01

0.65 -0.31 -0.11 0.30 -0.00 -0.00 0.17

0.65 -0.32 -0.11 0.31 0.01 0.01 0.17 1.00

-0.06 -0.29 0.04 0.23 0.12 0.12 0.13 -0.15 -0.15

-0.08 -0.18 0.10 0.15 0.05 0.05 0.09 -0.10 -0.09 0.67

-0.10 0.14 0.14 -0.10 0.19 0.19 -0.08 -0.17 -0.17 0.48 0.48

0.65 -0.31 -0.11 0.30 -0.00 -0.00 0.17 1.00 1.00 -0.15 -0.10 -0.17

-0.01 -0.01 -0.01 -0.01 0.03 0.03 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.7 Feature Correlation Heatmap



42 4. Evaluation

4.4.5 Feature Relevance Assessment Using Mutual Information

Mutual information (MI) was calculated between the candidate features and class
labels to assess the relevance of each feature to detecting attacks. MI captures both
linear and nonlinear relationships between the target variable and each feature. The
MI values for all candidate features are shown in Figure 4.8.

to
ta

l_
by

te
s

to
ta

l_
pa

ck
et

s

un
iq

ue
_s

rc

m
em

or
y_

pe
rc

en
t

m
em

or
y_

us
ag

e_
m

b

un
iq

ue
_d

st

cp
u_

pe
rc

en
t

pr
ot

o_
tc

p

pr
ot

o_
ud

p

th
re

ad
_c

ou
nt

pr
oc

es
s_

co
un

t

lo
ad

_a
vg

_1
m

in

m
em

or
y_

lim
it

_m
b

pr
ot

o_
ic

m
p

sy
n_

co
un

t

0.0

0.1

0.2

0.3

0.4

0.5

M
ut

ua
l I

nf
or

m
at

io
n

Figure 4.8 Mutual Information Scores of Features

Results from the MI analysis shown in Figure 4.8 demonstrate that many of the
network traffic intensity features along with some of the selected hardware metrics
provided very strong discriminatory information about normal and attack behav-
ior. On the other hand, some of the candidate features have MI values that are
close to zero, indicating that they do not contribute much to improving detection
performance.

The MI analysis provides further insight into the correlation analysis by showing
that some of the most informative features can be relevant to the task, even though
there may be redundancy between some of the features. Therefore, this analysis
supports a balanced approach to feature selection that takes into account both the
relevance of the features as well as redundancy.

4.4.6 Final Feature Selection

The results of correlation analysis, MI analysis, and the model-based experiment
eliminating redundant features, indicate an optimal subset of ten features that can
be used to support the detection model’s ability to identify hardware anomalies
through their relationship with network-related activity.

Evidence driven manual selection was employed for the identification of this subset
of features, and priority was given to those features demonstrating the highest degree
of relevancy and to eliminate or minimize any potential for redundant information
and high computational costs.

The final selected feature set used for model training is summarized in Table 4.7.



4.5. Online Deployment and Experimental Procedure 43

Category Feature Name

System Resource

cpu percent
memory percent
process count
load avg 1min

Network Traffic

total packets
unique src
unique dst
proto tcp
proto icmp
syn count

Table 4.7 Final Selected Feature Set

These selected features provide a broad range of related, but complementary views
of system level resources and network-related activities; thereby providing the model
with the means to effectively relate hardware anomalies to network-related anoma-
lies.

4.4.7 Offline Dataset Split

Preparation of the dataset for the purposes of training and evaluating the model
involved partitioning it into three separate partitions: training, validation and test.
Normal sample data was utilized solely for the purpose of training the autoencoder
and estimating reconstruction-based detection thresholds. A mixed dataset contain-
ing both normal and attack samples was randomly split, with 20% reserved as a
global test set.

The random partitioning of the dataset was done without setting a fixed global seed
to prevent bias within the dataset partition, and to simulate the variability found
in different deployment environments. The global test set would later be used to
calculate various metrics associated with detection performance of each client model
during online evaluation phase (e.g., Accuracy, Precision, Recall, and F1-score).

4.4.8 Summary

Data pre-processing and feature selection, using the tools provided by correlation
and MI analyses with empirical validation resulted in a compact, relevant represen-
tation of the dataset which supports unsupervised anomaly detection. This dataset
will serve as the foundation for offline model training and for the creation of the
deployment artifacts discussed in subsequent chapters.

4.5 Online Deployment and Experimental Procedure

This section provides information about the experimental setup with respect to
the live MininetFed environment and the deployment of the proposed FCDA. The



44 4. Evaluation

objective of this stage is to analyze the operational properties of the proposed system
under continuous monitoring, detection, and federated adaptation.

4.5.1 Online Deployment Configuration

To ensure that all clients started from the same initial state in a federated system,
each client agent was configured with a set of pre-computed, offline-generated de-
ployment artifacts. These artifacts included the autoencoder model weights from
offline training, the parameter values of the Min–Max scaler used for feature nor-
malization, and a set of client-specific hyperparameters (i.e., the learning rate, the
number of local epochs per iteration, and the anomaly detection threshold).

Although all clients used the same autoencoder architecture and initial model weights,
they employed client-specific parameters at runtime. This design approach permitted
a common representation of normal behavior while accommodating heterogeneous
learning dynamics across clients.

The deployment artifacts files were loaded into each client agent during the client
initialization process, at which point each client entered into a continuous monitoring
and detection cycle. No design changes were made between the offline and online
systems, ensuring an accurate and consistent representation across the two stages.

4.5.1.1 Anomaly Detection Threshold Selection and Sensitivity Analysis

Anomaly-detection threshold values play a significant role in reconstruction-error-
based anomaly detection methods, as they determine the trade-off between false
positives and false negatives. For the proposed framework, the anomaly detection
threshold for each client was determined during the offline knowledge-generation
phase using labeled training data and remained constant during online deployment.
This method provides consistent detection behavior without drifting in the threshold
during runtime.

A post-deployment sensitivity analysis was performed using the reserved global test
dataset to support the selection of the threshold values. The analysis evaluated
detection performance across a range of threshold values by calculating the mean
Precision, Recall, and F1-score across all clients. Figure 4.9 illustrates the relation-
ship between the anomaly threshold and these three metrics.



4.5. Online Deployment and Experimental Procedure 45

0.001 0.002 0.003 0.004 0.005
Anomaly Threshold

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Mean F1-score
Mean Precision

Mean Recall
Deployed Threshold  0.0014

Figure 4.9 Threshold Sensitivity Analysis

The results demonstrated that the system’s precision increased monotonically with
increasing threshold values, while Recall decreased with decreasing numbers of anoma-
lous samples exceeding the threshold. The mean F1-score reached its maximum in a
region of stability about the deployed threshold value (approximately 0.0014), and
it was important to note that this region exhibited a plateau rather than a sharp
peak, indicating that detection performance is robust to small threshold variations.

The threshold value used for the online deployment of the client agents was delib-
erately selected within the stable operating region to balance detection effectiveness
and operational reliability. Lower threshold values improve Recall at the expense
of a higher false-positive rate. False positives can be particularly detrimental in
resource-constrained IoT environments, as they can lead to unnecessary mitigations
that disrupt the system’s normal operation. On the other hand, higher threshold val-
ues yield fewer false positives but fewer detections for low-intensity or short-duration
attacks.

This behavior matches the confusion matrix and attack type error analysis presented
in Section 4.6.3, where false positives are few and false negatives are primarily re-
lated to low intensity UDP flood traffic. Therefore, the threshold sensitivity study
demonstrated that the threshold values obtained from offline training are justified
and suitable for online federated deployment.

4.5.2 Online Monitoring and Detection Loop

During each cycle of continuous monitoring and detection, each client agent col-
lected real-time data concerning both hardware and network metrics. At predefined
intervals, the client would extract a feature vector from the collected data and apply
the preloaded scaler parameters to normalize it.



46 4. Evaluation

Anomaly detection was then performed by calculating the reconstruction error ob-
tained when the normalized feature vector was input to the client’s autoencoder.
When the calculated reconstruction error exceeded the client-specific threshold de-
termined through offline validation, the client would classify the input feature vector
as anomalous. Anomalies were identified on a per-sample basis, thereby permitting
early detection of abnormal behavior.

In addition to normal operation, controlled DDoS attack traffic was periodically
generated during the experiment using hping3 between selected host pairs. These
DDoS attacks served only to validate the client’s response during live operation and
were not used as part of the performance evaluation metrics.

4.5.3 Federated Training Protocol

The FL process was implemented in an online experiment over predetermined num-
ber of rounds. There was no pre-specified termination point, the system was intended
to run continuously; the experiment was stopped manually once the predetermined
number of rounds had been completed.

All clients were eligible to take part in FL in each round. Eligibility to perform
local training was conditional upon having enough confident normal samples avail-
able. Therefore, clients would perform local updates only if they met this criterion;
otherwise, they would submit an empty update, which would be excluded from the
aggregation for that round.

Local training was executed according to each client’s specific learning rate and
epoch configuration, as provided in the deployment artifacts. This approach pre-
vented overfitting to limited amounts of noisy data while minimizing the additional
processing load that may be incurred on resource-constrained devices from unneces-
sary computation.

4.5.4 Server-Side Aggregation and Model Distribution

FedAvgM is used for aggregating the client updates to create the global model.
FedAvgM is similar to standard federated averaging except FedAvgM includes a
momentum term to improve stability in the presence of non-identical data distribu-
tions among clients.

Updates were aggregated on the server at the completion of each federated round and
included only those from clients that contributed a valid local model. The resulting
global model was then broadcast to all clients, ensuring each maintained a consistent
version, regardless of whether they participated in the most recent round.

Continuous updating of the global model was achieved while simultaneously enabling
robustness against client heterogeneity and variability in client participation.

4.5.5 Experimental Procedure Summary

The online evaluation followed a structured and repeatable experimental workflow.
The first step involved the distribution of deployment artifacts produced during the



4.5. Online Deployment and Experimental Procedure 47

Parameter Description
Initial weights Loaded from offline training
Scaler Min–Max (offline fitted)
Threshold Client-specific
Aggregation FedAvgM

Table 4.8 Online Deployment Parameters

offline knowledge generation phase to all client agents. Subsequently, a continuous
monitoring and anomaly detection cycle began for each client agent. During this
cycle, local feature vectors were processed by the client and reconstruction errors
calculated using the autoencoder model; once there were sufficient normal observa-
tion values, conditional local training was conducted at the client level. Local model
updates were periodically transmitted to the federated server, where aggregation was
carried out using the FedAvgM algorithm. The newly created global model would
then be returned to all the client agents and the process would continue to repeat
continuously during runtime operation.

To avoid a single execution being the source of the results presented, the complete
online experiment was executed independently three times, each time consisting
of approximately 800 federated rounds. The same deployment artifacts, topology
configuration and attack scenarios were utilized in each of the three runs. To evaluate
the detection performance metrics (i.e., Accuracy, Precision, Recall and F1-score),
at each federated round, the previously reserved global test dataset was used. Thus,
the short-term learning dynamics and the long-term stability of the proposed FCDA
system could be evaluated.

Table 4.9 reports the final detection performance for each independent run, together
with the mean and standard deviation across all three runs. The results show that
the proposed system has low variance across the multiple executions, and that the
Accuracy and Precision remain stable with the standard deviation of the metrics
remaining small (on the order of 10−3). These results indicate that the detection
performance is reproducible and robust to the variability of the runtime environment.

Run Accuracy Precision Recall F1-Score
1 0.957 0.971 0.880 0.923
2 0.953 0.967 0.870 0.916
3 0.957 0.973 0.878 0.923
Mean ± Std 0.956 ± 0.002 0.970 ± 0.003 0.876 ± 0.005 0.921 ± 0.004

Table 4.9 Final Detection Performance Across Independent Federated Runs

To further investigate the convergence characteristics of the proposed system, Fig-
ures 4.10 and 4.11 show how the average detection accuracy and global reconstruction
loss evolved over federated rounds for the all three runs. From Figure 4.10, it can
be seen that the Accuracy reaches a stable point early in the experiment and then
only marginally varies in the subsequent rounds, with most of the variations being
less than one-third decimal place. Furthermore, from Figure 4.11, it is clear that
the global reconstruction loss remained bounded within a relatively narrow range
across all runs, without signs of divergence or oscillatory behavior. The temporary



48 4. Evaluation

deviations observed in the reconstruction loss in some of the iterations were found to
be self-correcting and did not cause any long term decline in the overall performance
of the system.

0 100 200 300 400 500 600 700 800
Federated Rounds

0.925

0.930

0.935

0.940

0.945

0.950

0.955

M
ea

n 
Ac

cu
ra

cy

Run 1
Run 2

Run 3

Figure 4.10 Mean Accuracy vs Federated Rounds

0 100 200 300 400 500 600 700 800
Federated Rounds

0.0107

0.0108

0.0109

0.0110

G
lo

ba
l M

ea
n 

Re
co

ns
tr

uc
ti

on
 M

SE

Run 1
Run 2

Run 3

Figure 4.11 Global Mean Reconstruction MSE

Therefore, these results confirm that the proposed FCDA framework converges re-
liably and demonstrates stable detection performance during extended periods of
operation. Unlike other systems, the proposed system is designed to operate contin-
uously and reflects realistic deployment scenarios in SDN-based IoT environments
where monitoring and adaptation occur indefinitely. The convergence characteris-
tics observed in the experiments justify the duration of the experiments and confirm
the reliability and stability of the FL process in accordance with the design of the
proposed system.



4.6. Evaluation Metrics and Results 49

4.6 Evaluation Metrics and Results

This section presents the quantitative assessment of the FCDA. This includes an
assessment of detection capabilities, robustness across the federation of clients and
how use of offline knowledge impacts the overall effectiveness of the system. All
evaluation metrics presented are based on the reserved global test set (20%) which
contains both normal and attack samples. Further, it is separate from the data used
to train the models.

Unless noted otherwise, all of the details provided in sections 4.6.1–4.6.4 regarding
the detection performance have been generated as part of a single experiment run
over 1200 federated rounds. These rounds were selected to represent realistic contin-
uous operations of the architecture, allowing for a complete analysis of the detection
patterns, including the confusion matrices, the type of errors made for each type
of attack; ROC curve analysis. In addition to the above referenced evaluation run,
independent evaluation runs were performed and documented separately in Section
4.5.5. These independent evaluation runs assessed the overall robustness of the FL
approach, its stability, and its convergence by reporting mean performance and their
corresponding variances across executions.

4.6.1 Evaluation Metrics

Binary classification metrics are employed to evaluate detection performance:

• Accuracy: Measures the overall correctness of predictions.

• Precision: Quantifies the proportion of true positive detections out of total
detections.

• Recall: Measures the proportion of true positive detections out of all possible
positive detections.

• F1-Score: Represents the harmonic mean of Precision and Recall.

Metrics are calculated per client at the end of the evaluation rounds and then av-
eraged across all clients to yield mean performance metrics. There is no temporal
smoothing; therefore, the metrics reflect the model’s instantaneous performance at
its final state.

4.6.2 Detection Performance Across Clients

Results of the final detection capability of the offline initialized FCDA are sum-
marized for each client in Table 4.10. These results show consistent Accuracy and
Precision across all clients, despite non-identical data distributions and diverse local
observations. This similarity in clients’ performance can be attributed to the fact
that the offline knowledge-generation process successfully produced a robust initial-
ization that performed adequately across all clients, regardless of the differing traffic
and resource conditions each client operated under.



50 4. Evaluation

Client Accuracy ± 95% CI Precision ± 95% CI Recall ± 95% CI F1-Score ± 95% CI
sta0 0.960 ± 0.007 0.982 ± 0.009 0.880 ± 0.022 0.928 ± 0.012
sta1 0.961 ± 0.007 0.974 ± 0.010 0.891 ± 0.019 0.931 ± 0.013
sta2 0.960 ± 0.007 0.982 ± 0.008 0.880 ± 0.022 0.928 ± 0.012
sta3 0.961 ± 0.007 0.974 ± 0.010 0.891 ± 0.019 0.931 ± 0.012

Table 4.10 Final Detection Performance per Client (Offline-Initialized FCDA)

In addition to assessing overall performance, Table 4.11 provides information on the
stability of the proposed system’s performance. Table 4.11 presents the mean detec-
tion metrics (i.e., Accuracy, Precision, Recall, F1-Score) for all clients, along with
their corresponding 95% confidence intervals. The proposed system demonstrated a
mean Accuracy of 0.960 ± 0.001 and a mean Precision of 0.978 ± 0.005, indicating
high classification Accuracy and strong confidence in attack prediction. The narrow
CI of the metrics for Accuracy and Precision indicates that there is little variation
in performance among the clients and therefore the FCDA system behaves reliably
and predictably in a distributed environment.

The Recall rate of 0.885 ± 0.006 is significantly lower than the Precision rate of 0.978
± 0.005. The persistent gap between Recall and Precision indicates an inherently
conservative anomaly-detection method within the autoencoder-based approach. Al-
though Precision takes precedence over Recall in this approach due to the need to
avoid false positives, which could disrupt services or lead to undue resource uti-
lization in IoT networks. However, this conservative behavior may result in some
attacks not being detected, as reflected in the lower Recall.

Metric Mean ± 95% CI
Accuracy 0.960 ± 0.001
Precision 0.978 ± 0.005
Recall 0.885 ± 0.006
F1-Score 0.930 ± 0.001

Table 4.11 Mean Detection Performance Across Clients

A discrepancy between Recall and Precision does not indicate instability; the narrow
confidence interval for Recall indicates that the missed-detection events occur sys-
tematically rather than randomly, thereby motivating further investigation into the
nature of these false negatives. Further investigation into this area is addressed in
Section 4.6.3, where confusion matrix analysis and attack-type-specific error break-
downs reveal that the majority of missed detections correspond to specific attack
categories rather than generalized model failure.

In summary, the results presented in Tables 4.10 and 4.11 show that the offline-
initialized FCDA framework produces stable, high-recision detection across clients,
with predictable, explainable trade-offs between Precision and Recall. The charac-
teristics inherent to the proposed methodology provide the basis for its suitability for
deployment in resource-constrained SDN-based IoT environments, where reliability
and low false positive rates are critical.



4.6. Evaluation Metrics and Results 51

4.6.3 Confusion Matrix and Attack-Type Error Analysis

An aggregated confusion matrix was used to better understand how classification
occurs. By summing up the amount of true positives, false positives, true nega-
tives, and false negatives over all of the clients in the final evaluation round, a total
confusion matrix was created. The resulting confusion matrix is shown in Figure
4.12.

Normal Attack
Predicted

No
rm

al
At

ta
ck

Ac
tu

al

8430 70

408 3152

1000

2000

3000

4000

5000

6000

7000

8000

Figure 4.12 Aggregated Confusion Matrix (Offline-Initialized FCDA)

Based on the results from the confusion matrix, it can be seen that the majority of
the normal samples were correctly classified and there were very few false positives
generated; this demonstrates the ability of the offline derived anomalies thresholds to
identify normal traffic patterns. Additionally, while a small number of false negatives
exist the overall ratio of Precision to Recall suggests that the FCDA has good ability
to detect attacks in real-time monitoring environments.

Although a small amount of false negative classifications but they are not equally
distributed among different attack types. A detailed review of false negative classi-
fications by attack type revealed that the vast majority of false negatives resulted
from undetected UDP flood attacks. However, both SYN flood and ICMP flood
attacks had a much higher Recall rate than UDP floods. This is summarized in
Table 4.12, which presents the total number of attack samples, false negatives, and
the false negative rate for each attack type. The results indicate that UDP flood



52 4. Evaluation

attacks exhibit a substantially higher false negative rate (32.4%) compared to SYN
(1.46%) and ICMP (1.61%) floods.

Attack Type Total Attack Samples False Negatives False Negative Rate (%)
UDP FLOOD 1148 372 32.4
SYN FLOOD 1916 28 1.46
ICMP FLOOD 496 8 1.61

Table 4.12 False Negatives Distribution by Attack Type

In addition, the analysis of detection performance by attack type showed that the
Precision achieved by the FCDA framework is 1.0 (Table 4.13) for all of the attack
categories evaluated. This means that once an attack has been reported, it is always
accurate and none of the reported attack samples are incorrectly associated with
another class. This demonstrates the extremely conservative nature of the threshold-
based autoencoder design of the FCDA framework, where it will only report an
anomaly if it has high confidence. However, this conservative behavior results in
lower Recall for certain attack types, most notably UDP floods leading to missed
detections under specific traffic conditions.

Attack Type Precision Recall F1-Score False Negatives
UDP FLOOD 1.0 0.675958 0.806653 372
SYN FLOOD 1.0 0.985386 0.992639 28
ICMP FLOOD 1.0 0.983871 0.991870 8

Table 4.13 Detection Performance by Attack Type

A higher number of false negatives were detected for UDP Flood Attacks due to
their connectionless nature and the resulting traffic characteristics. Unlike SYN and
ICMP floods, which result in sudden and protocol-specific overhead in processing (i.e.
connection establishment or control message handling), UDP floods tend to result in
uniform and continuous traffic patterns. Such patterns can result in sustained loads
on hosts with relatively minor and short-term variations in reconstruction errors.
Therefore, low-rate or shorter-duration UDP Flood Attacks may not consistently
exceed the fixed anomaly threshold and thus may result in undetected attacks.

This difference in Precision and Recall is reflective of a trade-off in anomaly-based
intrusion detection systems. The conservative approach used by the FCDA frame-
work to ensure high Precision, thereby minimizing false alarms and ensuring the
stability of the system in resource constrained IoT deployments, also results in a re-
duced Recall for UDP floods. Such a reduced Recall suggests that certain low-level
or short duration attacks may not always have sufficient anomalous characteristics
to exceed the anomaly threshold of the system. Implementing dynamic adjustment
to the detection thresholds of the system or incorporating attack-specific adaptation
mechanisms could improve Recall without significantly increasing false positives and
this is identified as an important direction for future work.

Overall the confusion matrix and the attack-type error analysis demonstrated the
reliability of the proposed FCDA framework in confirming attacks while providing
robust classification of normal traffic, thereby supporting its applicability for real-
time deployment in SDN-based IoT environments.



4.6. Evaluation Metrics and Results 53

4.6.4 ROC Curve Analysis

Receiver Operating Characteristics (ROC) curves were used to determine how well
the autoencoder could differentiate between attack and normal samples through
the use of the continuous reconstruction errors (MSE). The ROC curve shows the
relationship between the true positive rate and the false positive rate for different
values of the threshold. The results are presented in Figure 4.13.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AUC = 0.974

Figure 4.13 ROC Curve (Offline-Initialized FCDA)

Using the area under the ROC curve (AUC), it was determined that the autoencoder
learned a discriminatory representation of normal behavior and therefore had a high
degree of separability when classifying samples between normal and attacks, with
an AUC value of 0.974.

4.6.5 Comparative Evaluation with FL from Scratch

The impact of offline knowledge generation on the proposed FCDA was evaluated
using a baseline scenario in which FL was performed from scratch, i.e., without
pre-trained model weights or prior knowledge from normalization parameters. This
baseline scenario utilized the exact same deployment and evaluation as the proposed
FCDA, however it accumulated all its training data while operating.



54 4. Evaluation

Figure 4.14 illustrates the overall detection performance of both scenarios. The
offline-initialized FCDA demonstrated consistent Accuracy, Precision, and F1-scores,
while the baseline showed significantly reduced Accuracy and Precision values and
therefore poor anomaly detection capability in the absence of prior knowledge.

Accuracy Precision Recall F1
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Offline-Initialized FCDA FL from Scratch

Figure 4.14 Final Detection Performance Comparison

In addition, to better understand the learning process depicted in Figure 4.15 shows
the mean detection accuracy over the first 100 federated rounds for both the pro-
posed FCDA and the baseline. For fair comparison between the two experiments,
the Accuracy of the offline-initialized FCDA was cut off after 100 rounds to match
the duration of the baseline experiment. The results demonstrate that the offline-
initialized FCDA, maintained a very high Accuracy value, right from the start,
indicating operational readiness immediately. Conversely, the baseline did not ex-
hibit any learning growth and remained at a very low Accuracy value throughout
the entire experiment.



4.7. Scalability Analysis 55

0 20 40 60 80 100
Federated Round

0.3

0.4

0.5

0.6

0.7

0.8

0.9
M

ea
n 

Ac
cu

ra
cy

Offline-Initialized FCDA FL from Scratch

Figure 4.15 Mean Detection Accuracy vs Federated Rounds

This inability to learn by the baseline configuration can be attributed to the absence
of an initial model representing normal behavior, combined with limited local data
buffering under resource constraints. Therefore, the baseline system was incapable of
gathering enough reliable samples for it to provide stable federated updates. There-
fore, the baseline system was incapable of gathering enough reliable samples for it
to provide stable federated updates.

Overall, this comparative analysis clearly demonstrates that offline knowledge gen-
eration is a key component of the proposed FCDA. Through its ability to provide an
informed initialization, the offline phase allows for the effective and stable detection
of anomalies within federated systems that have constrained resources, which cannot
be achieved through FL from scratch alone.

4.7 Scalability Analysis

Section 4.6 demonstrated the feasibility of the proposed FCDA framework in a small-
sized federated environment; however, in most cases, a realistic SDN-based IoT
deployment includes many more distributed units. Thus, this section will investigate
whether the proposed system maintains its ability to detect anomalies accurately as
the number of clients increases.

In particular, this section focuses on the scalability of the proposed FCDA frame-
work by investigating the behavior of the proposed architecture when the network
size increases. In contrast to creating new offline-trained models for each network
size, the proposed experiments evaluate the structural and functional scalability of
the proposed architecture, i.e., whether the offline-initialized FL process remains



56 4. Evaluation

stable, whether the detection performance deteriorates as the federation expands,
and whether the aggregation mechanism still operates correctly with more clients.

Two scalability experiments were conducted utilizing larger networks with 8 and 16
clients, respectively. The detection performance achieved in these experiments are
compared to the detection performance of the results reported in Section 4.6, where
a network with 4 clients was used.

4.7.1 Experimental Setup for Scalability Analysis

For the purpose of comparison to the 4-client experimental setup presented in Sec-
tion 4.6, the scalability experiments were conducted utilizing the same system design.
Each client utilized the same autoencoder architecture, feature set, anomaly detec-
tion logic, and federated aggregation method as before. The same methodologies for
generating attacks, and evaluating detection performance, were used as well.

For the scalability experiments, the same deployment artifacts generated offline from
the 4-client knowledge generation process were used. These artifacts comprised
the trained autoencoder model weights, the Min-Max scaler parameters, and the
client-specific hyperparameters. For the additional clients added to the network in
the expanded configurations, the deployment parameters were replicated from the
original four clients, in a cyclical manner. This method provided for a controlled
evaluation of scalability without requiring repeated offline retraining.

Each scalability experiment was executed using MininetFed, and the clients op-
erated within resource constrained container environments similar to the previous
experiments. The detection performance for each of the scalability experiments was
evaluated using the same reserved global test dataset, so that comparisons of de-
tection performance could be made fairly and consistently, across different network
sizes.

The number of rounds utilized in the federated scalability experiments differed from
the number of rounds utilized in the prior 4-client experimental evaluation. This
choice was influenced by the convergence analysis presented in Section 4.5.5, where
it is shown that the FCDA framework reaches stable detection performance and
bounded reconstruction loss early during runtime operation with minimal variability
in subsequent rounds. Therefore, continued execution past the point of convergence
was not required to evaluate scalability. The 8-client and 16-client experiments were
therefore terminated after 350 and 300 rounds respectively, which were sufficient to
achieve and maintain stable post-convergence behavior while minimizing unneces-
sary computational overhead. This approach provides a realistic representation of
the typical deployment scenario where scalability is evaluated under steady-state
operation, rather than prolonged training durations.

4.7.2 Experiment 1: 8-Client Deployment

The first scalability experiment examined the proposed FCDA framework in an 8-
client federated deployment. The network configuration utilized one ryu remote



4.7. Scalability Analysis 57

controller and two OpenFlow switches (S1 and S2), which were interconnected. 4
clients were attached to each switch, yielding a total of 8 distributed clients.

sta0 sta1 sta2 sta3

RYU Controller

OpenFlow
Switch (S1)

sta4 sta5 sta6 sta7

OpenFlow
Switch (S2)

Figure 4.16 Eight Client Topology

The additional clients were configured by replicating the offline generated deploy-
ment parameters of the original four clients. Specifically, the deployment parameters
of clients sta0 through sta3 were duplicated for clients sta4 through sta7, respec-
tively. In doing so, the federation was scaled, and the use of the validated offline
initialization process was maintained.

The experiment was performed over 350 FL rounds. During the experiment, the
clients performed continuous monitoring, detected anomalies, and conditionally trained
locally as explained in Section 4.5. The federated averaging aggregation was per-
formed using the FedAvgM algorithm, and detection performance metrics were
logged per client after each round.

The final-round detection performance across all 8 clients is summarized in Table
4.14. The values provided represent the mean detection performance of the clients
at the final evaluation round along with the corresponding 95% confidence interval.

Metric Mean ± 95% CI
Accuracy 0.956 ± 0.001
Precision 0.968 ± 0.002
Recall 0.880 ± 0.006
F1-Score 0.922 ± 0.003

Table 4.14 Mean Detection Performance Across 8 Clients



58 4. Evaluation

The results of the 8-client experiment demonstrate that increasing the network size
from 4 to 8 clients does not result in a significant loss of detection performance.
Accuracy and Precision are high, and have very narrow confidence intervals, which
indicates that the federated aggregation process is stable even with an increase in
the number of clients. Recall rates remain lower than Precision rates as they did in
the smaller-scale experiment and are not reduced further with the increased number
of clients.

Overall, the 8-client experiment shows that the proposed FCDA framework scales
well beyond the initial 4 clients configuration, and provides a reliable and consistent
detection performance.

4.7.3 Experiment 2: 16-Client Deployment

The second scalability experiment further tested the proposed FCDA architecture
in an expanded federated testbed comprising 16 client nodes. The network topology
comprised a single ryu controller with four OpenFlow switches linked together in a
linear configuration. 4 clients were attached to each switch, yielding a total of 16
distributed clients.

sta0 sta1 sta2 sta3

RYU Controller

OpenFlow
Switch (S1)

sta4 sta5 sta6 sta7

OpenFlow
Switch (S2)

sta8 sta9 sta10 sta11

OpenFlow
Switch (S3)

sta12 sta13 sta14 sta15

OpenFlow
Switch (S4)

Figure 4.17 Sixteen Client Topology

The experimental methodology was the same as that used in the previous scalabil-
ity experiment described in Section 4.7.2 except that we replicated the previously
generated off-line deployment files to support an additional 12 clients (from sta4
through sta15). This experiment was executed for 300 FL rounds.

The final-round detection performance across all 16 clients is summarized in Table
4.15. The values provided represent the mean detection performance of the clients
at the final evaluation round along with the corresponding 95% confidence interval.

These results show that increasing the size of the network from 8 clients to 16
clients resulted in very little loss of detection performance. Accuracy remained at
a high level and exhibited extremely small confidence intervals; therefore, there was
no variation in the classification decisions made by any of the clients. Precision
and Recall followed the same patterns as the two previous experiments; therefore,



4.7. Scalability Analysis 59

Metric Mean ± 95% CI
Accuracy 0.953 ± 0.000
Precision 0.957 ± 0.005
Recall 0.879 ± 0.006
F1-Score 0.916 ± 0.001

Table 4.15 Mean Detection Performance Across 16 Clients

the Precision was always greater than the Recall due to the conservative anomaly
detection strategy employed by the autoencoder-based model.

In summary, the results of the 16-client experiment demonstrate that the FCDA
architecture provides stable and reliable detection performance regardless of the
number of clients increases significantly. These findings suggest that the federated
aggregation mechanism and offline initialization strategy provide effective general-
ization of the FCDA architecture to larger networks while still providing adequate
performance within the limitations of the experimental resources.

4.7.4 Summary

Table 4.16 and Figure 4.18 present the detection performance of the FCDA frame-
work as the number of clients increased from 4 to 8 and 16. The data shows that
the performance of the system is very consistent even though all deployments are
utilizing the same offline-generated artifacts from the original four-client setup.

Table 4.16 demonstrates a small decrease in mean detection accuracy from 0.960
in the four-client deployment down to 0.956 in the eight-client configuration and
finally 0.953 in the sixteen-client deployment. These results show that there was
an absolute decrease in detection accuracy of less than 1%, which indicates that
the federated aggregation process continues to remain stable and accurate as the
number of clients increases. Precision continues to remain very high across all three
configurations (≥ 0.957) and suggests that the addition of multiple clients to the
federation does not produce additional false positives.

Recall was also consistent across deployments and was near 0.88 for all federation
sizes. This behavior confirms that the conservative detection characteristics identi-
fied in smaller-scale experiments were maintained in large-scale configurations with-
out further degradation. The resulting reduction in F1-scores was thus consistent
and predictable and resulted from a balance between Precision and Recall rather
than any instability or oscillations.

Number of Clients Accuracy ± 95% CI Precision ± 95% CI Recall ± 95% CI F1-Score ± 95% CI
4 0.960 ± 0.001 0.978 ± 0.005 0.885 ± 0.006 0.930 ± 0.001
8 0.956 ± 0.001 0.968 ± 0.002 0.880 ± 0.006 0.922 ± 0.003
16 0.953 ± 0.000 0.957 ± 0.005 0.879 ± 0.006 0.916 ± 0.001

Table 4.16 Detection Performance Across Network Sizes

Figure 4.18 provides additional evidence of this trend by showing the mean detection
accuracy at the final round for each federation size. The downward trend in mean
detection accuracy as the federation size increases clearly shows that the proposed



60 4. Evaluation

method is scalable and that the use of previously initialized offline-generated knowl-
edge allows for effective growth of the federation without having to retrain offline
for each scale-up.

4 8 16
Number of Clients

0.90

0.92

0.94

0.96

0.98

1.00

M
ea

n 
D

et
ec

ti
on

 A
cc

ur
ac

y 
(F

in
al

 R
ou

nd
)

0.960
0.956

0.953

Figure 4.18 Mean Detection Accuracy vs Number of Clients

Overall, these results demonstrate that the FCDA framework can grow with the
number of clients participating and that it performs well regardless of the number
of clients, and that the feasibility of using the proposed design in large SDN-based
IoT deployments where retraining for every scale increase would be infeasible.



5
Conclusion

This thesis addressed the challenge of detecting cyber threats in SDN-IoT networks,
particularly in resource-constrained conditions. Current intrusion detection sys-
tems typically use either only network traffic analysis or only a centralized learning
paradigm, neither of which adequately address the characteristics of current IoT
networks: many different types of heterogeneous devices; limited computing capa-
bilities; and distributed control. Therefore, motivated by these challenges, the focus
of this thesis has been to improve SDN-based security through the combination of
network traffic analysis, hardware resource monitoring, and FL.

To accomplish this objective, the thesis proposed the FCDA, a distributed anomaly
detection framework intended to be used to enhance an existing CDA. The FCDA
introduces a two-phase design; it includes an offline knowledge generation and on-
line federated operation. During the offline phase, representative normal and attack
data is gathered, processed, and used to train an autoencoder-based anomaly detec-
tion model and create deployment artifacts, including model weights, normalization
parameters, and detection thresholds. During the online stage, these artifacts en-
able the instant detection of anomalies at the client level, while the FL supports
continuous adaptation without centralizing raw data. Furthermore, the FCDA op-
erates independently of mitigation actions and is designed to inform the CDA of
detected attacks, thus maintaining a separation of responsibility between detection
and response.

The proposed architecture was evaluated in an experimental environment developed
using MininetFed, which included resource-constrained client hosts and a remote
SDN controller. The test results showed that the offline-initialized FCDA achieved
high and stable detection capability across multiple federated clients. Across multi-
ple experimental runs, the FCDA consistently maintained approximately 96% aver-
age detection accuracy, high precision and a low false positive ratio, and exhibited
resilient performance even under non-identical data distributions. ROC analysis
provided strong evidence of the ability of the FCDA to separate normal and at-
tack behavior, with an Area Under the Curve close to 0.98. More importantly, the



62 5. Conclusion

FCDA did not significantly increase the runtime CPU or memory usage of the client
during online operation, thereby validating the feasibility of deploying the FCDA
continuously in constrained environments.

A comparative evaluation of the FCDA with a FL configuration that started from
scratch validated the importance of the offline generated knowledge. When there
was no pre-trained model and no normalized values available to start the learning
process, the baseline system failed to learn effectively and produced very poor de-
tection results. This comparative validation demonstrates that offline knowledge is
a critical component of achieving effective federated anomaly detection when local
data availability and computational resources are limited.

While the initial four-client configuration was used to create the knowledge base for
the FCDA, the effectiveness of the FCDA was also tested in larger federations of 8
and 16 clients. The scalability tests demonstrated that as the number of participating
clients in the federation increases, the detection performance of the FCDA decreases
gradually but minimally. Specifically, the mean detection accuracy of the FCDA
decreased from approximately 0.960 with 4 clients to 0.956 with 8 clients and to
0.953 with 16 clients. Precision and recall also demonstrated similar stable trends.
The results of these scalability tests demonstrate that the federated aggregation
process can be reliably applied even in larger federations and that the proposed
framework can scale well without the need for repeated offline training.

Despite these positive outcomes, some limitations were observed. The use of deep
learning frameworks like PyTorch imposed a non-negligible memory footprint, mak-
ing it difficult to reliably operate under extreme memory constraints (i.e., 50 MB).
Consequently, all experiments were conducted with client memory limits of 512 MB
to ensure the stability of the experiment. Although the online evaluation demon-
strated scalability up to 16 client devices, the offline knowledge generation phase
was performed utilizing a smaller set of representative client devices. Therefore,
further investigation is needed to determine the performance of the FCDA in very
large-scale deployments that involve tens or hundreds of devices. Furthermore, even
though the FCDA can identify anomalies and generate alerts, the operational con-
nection between the FCDA and the CDA for automated mitigation was not imple-
mented or evaluated, and therefore remains conceptual in this work. Additionally,
the evaluation was performed in a wired Ethernet-based MininetFed environment,
and wireless communication scenarios have not been explored.

Another observed limitation of the FCDA relates to its conservatively defined detec-
tion behavior. As previously mentioned in the attack-type error analysis, the FCDA
prioritizes precision in its detection to prevent unnecessary disruptions in resource-
constrained IoT environments. While this approach will result in the FCDA being
reliable and stable, it will also produce lower levels of recall for certain types of
attacks, particularly UDP floods. This implies that the FCDA may not consistently
identify all low intensity or short duration attacks as they do not consistently have
enough anomalous characteristics to meet the threshold used by the FCDA. Most
importantly, the false negatives produced by the FCDA are systematic, rather than
random, and indicate a predictable trade-off in detection strategy as opposed to
instability in the model.

The above limitations suggest several promising directions for future work. Tech-
niques for compressing lightweight models or alternative inference runtimes could



63

lower the memory requirements of the FCDA and allow it to deploy on more resource-
constrained devices. An extension of the evaluation to larger, more complex SDN
topologies, including multi-controller and wireless IoT environments, will allow for
better understanding of scalability and coordination effects in the FCDA. Addi-
tionally, incorporating more sophisticated and application-layer attacks (e.g. HTTP
floods, Slowloris attacks, DNS amplification, etc.) into the attack model will increase
the scope of the proposed framework. These attacks often produce subtle traffic pat-
terns and resource exhaustion effects over time, thereby requiring enhanced feature
representations and adaptable thresholds. Finally, implementing and evaluating real-
time coordination protocols between the FCDA and CDA would enable closed-loop
detection and mitigation.

In conclusion, this thesis has demonstrated that the combination of offline knowl-
edge generation with online FL and multi-dimensional monitoring is an effective
and practical method for detecting cyber threats in SDN-based IoT environments.
Through the decoupling of detection and mitigation and the ability of the FCDA
to learn continuously in a decentralized manner, the proposed FCDA contributes a
scalable and expandable foundation for increasing the resilience of SDN.

Reproducibility.

All scripts developed and used for data processing, model training, evaluation, and
plot generation in this thesis are publicly available in a GitHub repository: https:
//github.com/olidsayed/FCDA.

The repository contains the complete experimental pipeline and enables reproduction
of the results presented in this work.



64 5. Conclusion



Bibliography

[1] Ali, S., Alvi, M. K., Faizullah, S., Khan, M. A., Alshanqiti, A., and
Khan, I. Detecting ddos attack on sdn due to vulnerabilities in openflow. In
2019 International Conference on Advances in the Emerging Computing Tech-
nologies (AECT) (2020), IEEE, pp. 1–6.

[2] Azad, K. M. S., Hossain, N., Islam, M. J., Rahman, A., and Kabir,
S. Preventive determination and avoidance of ddos attack with sdn over the
iot networks. In 2021 International Conference on Automation, Control and
Mechatronics for Industry 4.0 (ACMI) (2021), IEEE, pp. 1–6.

[3] Bera, S., Misra, S., and Vasilakos, A. V. Software-defined networking
for internet of things: A survey. IEEE Internet of Things Journal 4, 6 (2017),
1994–2008.

[4] Bhayo, J., Hameed, S., and Shah, S. A. An efficient counter-based ddos
attack detection framework leveraging software defined iot (sd-iot). IEEE Access
8 (2020), 221612–221631.

[5] Biondi, P., and the Scapy Community. Scapy: The python-based in-
teractive packet manipulation program. https://scapy.net, 2024. Version
2.6.1.

[6] Braga, R., Mota, E., and Passito, A. Lightweight ddos flooding attack
detection using nox/openflow. In IEEE Local Computer Network Conference
(2010), IEEE, pp. 408–415.

[7] Deng, S., Gao, X., Lu, Z., Li, Z., and Gao, X. Dos vulnerabilities
and mitigation strategies in software-defined networks. Journal of Network and
Computer Applications 125 (2019), 209–219.

[8] Han, T., Jan, S. R. U., Tan, Z., Usman, M., Jan, M. A., Khan, R.,
and Xu, Y. A comprehensive survey of security threats and their mitigation
techniques for next-generation sdn controllers. Concurrency and Computation:
Practice and Experience 32, 16 (2020), e5300.

[9] Hsu, T.-M. H., Qi, H., and Brown, M. Measuring the effects of non-
identical data distribution for federated visual classification. arXiv preprint
arXiv:1909.06335 (2019).

[10] Kalkan, K., Gür, G., and Alagöz, F. Sdnscore: A statistical defense
mechanism against ddos attacks in sdn environment. In 2017 IEEE symposium
on computers and communications (ISCC) (2017), IEEE, pp. 669–675.



66 Bibliography

[11] Kandoi, R., and Antikainen, M. Denial-of-service attacks in openflow sdn
networks. In 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM) (2015), IEEE, pp. 1322–1326.

[12] Kloth, S., RETTORE, P. H. L., Zißner, P., Santos, B. P., and Sev-
enich, P. Towards a cyber defense system in software-defined tactical net-
works. In 2024 International Conference on Military Communication and In-
formation Systems (ICMCIS) (2024), pp. 1–8.

[13] Kloth, S., Rettore, Paulo H. L., Zissner, P., dos Santos, B. P., and
Sevenich, P. Securing Software-Defined tactical networks: A cyber defense
system. In 2025 IFIP Networking Conference (IFIP Networking) (IFIP Net-
working 2025) (Limassol, Cyprus, 5 2025), pp. 1–8.

[14] Li, C., Qin, Z., Novak, E., and Li, Q. Securing sdn infrastructure of iot–
fog networks from mitm attacks. IEEE Internet of Things Journal 4, 5 (2017),
1156–1164.

[15] Luo, H., Li, W., Qian, Y., and Dou, L. Mitigating sdn flow table overflow.
In 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC) (2018), vol. 1, IEEE, pp. 821–822.

[16] Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A.,
Breitenbacher, D., and Elovici, Y. N-baiot—network-based detection of
iot botnet attacks using deep autoencoders. IEEE Pervasive Computing 17, 3
(2018), 12–22.

[17] Mousavi, S. M., and St-Hilaire, M. Early detection of ddos attacks against
sdn controllers. In 2015 international conference on computing, networking and
communications (ICNC) (2015), IEEE, pp. 77–81.

[18] Olanrewaju-George, B., and Pranggono, B. Federated learning-based
intrusion detection system for the internet of things using unsupervised and
supervised deep learning models. Cyber Security and Applications 3 (2025),
100068.

[19] Qian, Y., You, W., and Qian, K. Openflow flow table overflow attacks and
countermeasures. In 2016 European Conference on Networks and Communica-
tions (EuCNC) (2016), IEEE, pp. 205–209.

[20] Sanfilippo, S. hping3: Tcp/ip packet assembler/analyzer. http://www.hpin
g.org, 2004. Version 3.0.0-alpha-2.

[21] Sarmento, E. M., Bastos, J. J., Villaca, R. S., Comarela, G., and
Mota, V. F. Mininetfed: A tool for assessing client selection, aggregation, and
security in federated learning. In 2024 IEEE 10th World Forum on Internet of
Things (WF-IoT) (2024), IEEE, pp. 1–6.

[22] Wang, S., Gomez, K., Sithamparanathan, K., Asghar, M. R., Rus-
sello, G., and Zanna, P. Mitigating ddos attacks in sdn-based iot networks
leveraging secure control and data plane algorithm. Applied Sciences 11, 3
(2021), 929.



Bibliography 67

[23] Xu, T., Gao, D., Dong, P., Zhang, H., Foh, C. H., and Chao, H.-C.
Defending against new-flow attack in sdn-based internet of things. IEEE Access
5 (2017), 3431–3443.

[24] Xu, Y., and Liu, Y. Ddos attack detection under sdn context. In IEEE
INFOCOM 2016-the 35th annual IEEE international conference on computer
communications (2016), IEEE, pp. 1–9.

[25] Zhou, Y., Chen, K., Zhang, J., Leng, J., and Tang, Y. Exploiting the
vulnerability of flow table overflow in software-defined network: Attack model,
evaluation, and defense. Security and Communication Networks 2018 (2018),
1–15.



68 Bibliography



List of Figures

3.1 Offline Knowledge Generation. . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Online Training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 SYN Flood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 ICMP Flood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 UDP Flood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Four Client Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Hardware and Network Behavior Over Time (Relative Time) . . . . . 39

4.6 Correlation Between Hardware and Network Metrics . . . . . . . . . 39

4.7 Feature Correlation Heatmap . . . . . . . . . . . . . . . . . . . . . . 41

4.8 Mutual Information Scores of Features . . . . . . . . . . . . . . . . . 42

4.9 Threshold Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 45

4.10 Mean Accuracy vs Federated Rounds . . . . . . . . . . . . . . . . . . 48

4.11 Global Mean Reconstruction MSE . . . . . . . . . . . . . . . . . . . . 48

4.12 Aggregated Confusion Matrix (Offline-Initialized FCDA) . . . . . . . 51

4.13 ROC Curve (Offline-Initialized FCDA) . . . . . . . . . . . . . . . . . 53

4.14 Final Detection Performance Comparison . . . . . . . . . . . . . . . . 54

4.15 Mean Detection Accuracy vs Federated Rounds . . . . . . . . . . . . 55

4.16 Eight Client Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.17 Sixteen Client Topology . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.18 Mean Detection Accuracy vs Number of Clients . . . . . . . . . . . . 60



70 List of Figures



List of Tables

2.1 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Testbed Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Client Resource Constraints Across Experiments . . . . . . . . . . . . 33

4.3 Attack Types and Characteristics. . . . . . . . . . . . . . . . . . . . . 34

4.4 Hardware-Based Metrics Collected via the Docker API . . . . . . . . 35

4.5 Network-Based Features Extracted from Collected Traffic . . . . . . . 36

4.6 Distribution of Normal and Attack Samples Across Clients . . . . . . 37

4.7 Final Selected Feature Set . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8 Online Deployment Parameters . . . . . . . . . . . . . . . . . . . . . 47

4.9 Final Detection Performance Across Independent Federated Runs . . 47

4.10 Final Detection Performance per Client (Offline-Initialized FCDA) . . 50

4.11 Mean Detection Performance Across Clients . . . . . . . . . . . . . . 50

4.12 False Negatives Distribution by Attack Type . . . . . . . . . . . . . . 52

4.13 Detection Performance by Attack Type . . . . . . . . . . . . . . . . . 52

4.14 Mean Detection Performance Across 8 Clients . . . . . . . . . . . . . 57

4.15 Mean Detection Performance Across 16 Clients . . . . . . . . . . . . 59

4.16 Detection Performance Across Network Sizes . . . . . . . . . . . . . . 59


